AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Viologens-based redox mediators with tunable HOMO–LUMO energy gap for highly effective hydrogen peroxide electrosynthesis

Yang Gao1,§Xiaohui Xu1,2,§Yue Niu1,2Xinran Hu1Zeyu Li3Longkun Yang3( )Linjie Zhi1,4( )Bin Wang1,2 ( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China
College of New Energy, China University of Petroleum (East China), Qingdao 266580, China

§ Yang Gao and Xiaohui Xu contributed equally to this work.

Show Author Information

Graphical Abstract

Viologen-based molecules were prepared as a model catalyst to investigate the underlying structure–function relationship for small molecules-based H2O2 electrosynthesis.

Abstract

In comparison with the developing nano-carbon catalysts, some small organic molecules are also emerging as catalysts with typical features, however, their working mechanism is still unclear. Here, we synthesized a series of viologen-based heterogeneous catalysts with the same molecular skeleton but different substituent groups through anion exchange engineering. These viologen-based molecules were used as a model catalyst to investigate the underlying structure–function relationship for small molecules-based H2O2 electrosynthesis. Differing from the commonly reported carbon-based electrocatalysts, viologens can produce H2O2 in a synergistic manner, which means that viologens can not only directly catalyze oxygen reduction but also serve as a redox mediator. We found that the ring current and H2O2 selectivity of viologens deliver an increasing trend with the increase of the alkyl chain length of alkyl-substituted viologens and further increase when using benzyl as the substituent group. As a result, a benzyl-substituted viologen (BV) delivers the best electrocatalytic performance among the samples, including the highest H2O2 selectivity of 96.9% at 0.6 V and the largest ring current density of about 13.6 mA·mmol−1. Furthermore, density functional theory (DFT) calculations disclose that the carbon atoms bonded with positively charged N are the active sites and the small highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) energy gap of BV is beneficial to the synergistic mechanism for H2O2 production. This work sheds new insight into the efficient H2O2 production in a synergistic manner for small molecules-based electrocatalysts.

Electronic Supplementary Material

Video
12274_2023_5887_MOESM2_ESM.mp4
Download File(s)
12274_2023_5887_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Sun, Y. Y.; Han, L.; Strasser, P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem. Soc. Rev. 2020, 49, 6605–6631.

[2]

Yang, X. X.; Zeng, Y. C.; Alnoush, W.; Hou, Y.; Higgins, D.; Wu, G. Tuning two-electron oxygen-reduction pathways for H2O2 electrosynthesis via engineering atomically dispersed single metal site catalysts. Adv. Mater. 2022, 34, 2107954.

[3]

Zhang, Q. R.; Tan, X.; Bedford, N. M.; Han, Z. J.; Thomsen, L.; Smith, S.; Amal, R.; Lu, X. Y. Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nat. Commun. 2020, 11, 4181.

[4]

Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis. ACS Catal. 2018, 8, 4064–4081.

[5]

Bu, Y. F.; Wang, Y. B.; Han, G. F.; Zhao, Y. X.; Ge, X. L.; Li, F.; Zhang, Z. H.; Zhong, Q.; Baek, J. B. Carbon-based electrocatalysts for efficient hydrogen peroxide production. Adv. Mater. 2021, 33, 2103266.

[6]

Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137–1143.

[7]

Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L. I.; Sieber, V.; Wang, L.; De León, C. P.; Walsh, F. C. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 2019, 3, 442–458.

[8]

Tong, X.; Zhan, X. X.; Rawach, D.; Chen, Z. S.; Zhang, G. X.; Sun, S. H. Low-dimensional catalysts for oxygen reduction reaction. Prog. Nat. Sci. Mater. Int. 2020, 30, 787–795.

[9]

Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

[10]

Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J. H.; Yang, P. D.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282–290.

[11]

Xia, Y.; Zhao, X. H.; Xia, C.; Wu, Z. Y.; Zhu, P.; Kim, J. Y.; Bai, X. W.; Gao, G. H.; Hu, Y. F.; Zhong, J. et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 2021, 12, 4225.

[12]

Xu, S. S.; Gao, Y.; Liang, T.; Zhang, L. P.; Wang, B. N,O-coupling towards the selectively electrochemical production of H2O2. Chin. Chem. Lett. 2022, 33, 5152–5157.

[13]

Wang, B.; Zhi, L. J. Graphene: Functions and applications—Growth, properties, and new devices. Acta Phys. Chim. Sin. 2022, 38, 2103059.

[14]

Melchionna, M.; Fornasiero, P.; Prato, M. The rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions. Adv. Mater. 2019, 31, 1802920.

[15]

Zhou, Y.; Chen, G.; Zhang, J. J. A review of advanced metal-free carbon catalysts for oxygen reduction reactions towards the selective generation of hydrogen peroxide. J. Mater. Chem. A 2020, 8, 20849–20869.

[16]

Li, M. T.; Zhang, L. P.; Xu, Q.; Niu, J. B.; Xia, Z. H. N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations. J. Catal. 2014, 314, 66–72.

[17]

Zhao, X. H.; Liu, Y. Y. Origin of selective production of hydrogen peroxide by electrochemical oxygen reduction. J. Am. Chem. Soc. 2021, 143, 9423–9428.

[18]

Zhang, W.; Jia, B. H.; Liu, X.; Ma, T. Y. Surface and interface chemistry in metal-free electrocatalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 5–34.

[19]

Han, G. F.; Li, F.; Zou, W.; Karamad, M.; Jeon, J. P.; Kim, S. W.; Kim, S. J.; Bu, Y. F.; Fu, Z. P.; Lu, Y. L. et al. Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nat. Commun. 2020, 11, 2209.

[20]

Yan, X. Y.; Li, D. H.; Zhang, L. X.; Long, X. J.; Yang, D. J. Tuning oxygen-containing groups of pyrene for high hydrogen peroxide production selectivity. Appl. Catal. B: Environ. 2022, 304, 120908.

[21]

He, Q. G.; Wu, G.; Liu, K.; Khene, S.; Li, Q.; Mugadza, T.; Deunf, E.; Nyokong, T.; Chen, S. W. Effects of redox mediators on the catalytic activity of iron porphyrins towards oxygen reduction in acidic media. ChemElectroChem 2014, 1, 1508–1515.

[22]

Reis, R. M.; Valim, R. B.; Rocha, R. S.; Lima, A. S.; Castro, P. S.; Bertotti, M.; Lanza, M. R. V. The use of copper and cobalt phthalocyanines as electrocatalysts for the oxygen reduction reaction in acid medium. Electrochim. Acta 2014, 139, 1–6.

[23]

Barros, W. R. P.; Reis, R. M.; Rocha, R. S.; Lanza, M. R. V. Electrogeneration of hydrogen peroxide in acidic medium using gas diffusion electrodes modified with cobalt(II) phthalocyanine. Electrochim. Acta 2013, 104, 12–18.

[24]

Wang, A.; Bonakdarpour, A.; Wilkinson, D. P.; Gyenge, E. Novel organic redox catalyst for the electroreduction of oxygen to hydrogen peroxide. Electrochim. Acta 2012, 66, 222–229.

[25]

Moreira, J.; Lima, V. B.; Goulart, L. A.; Lanza, M. R. V. Electrosynthesis of hydrogen peroxide using modified gas diffusion electrodes (MGDE) for environmental applications: Quinones and azo compounds employed as redox modifiers. Appl. Catal. B: Environ. 2019, 248, 95–107.

[26]

Gadgil, B.; Damlin, P.; Ääritalo, T.; Kankare, J.; Kvarnström, C. Electrosynthesis and characterization of viologen cross linked thiophene copolymer. Electrochim. Acta 2013, 97, 378–385.

[27]

Ensling, D.; Stjerndahl, M.; Nytén, A.; Gustafsson, T.; Thomas, J. O. A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes. J. Mater. Chem. 2009, 19, 82–88.

[28]

Sampanthar, J. T.; Neoh, K. G.; Ng, S. W.; Kang, E. T.; Tan, K. L. Flexible smart window via surface graft copolymerization of viologen on polyethylene. 3.0.CO;2-9">Adv. Mater. 2000, 12, 1536–1539.

[29]

Sa, Y. J.; Kim, J. H.; Joo, S. H. Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production. Angew. Chem., Int. Ed. 2019, 58, 1100–1105.

[30]

Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y. Z.; Yan, X. Z.; Nilsson, E. et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2018, 140, 7851–7859.

[31]

Guo, Y.; Zhang, R.; Zhang, S. C.; Hong, H.; Zhao, Y. W.; Huang, Z. D.; Han, C. P.; Li, H. F.; Zhi, C. Y. Ultrahigh oxygen-doped carbon quantum dots for highly efficient H2O2 production via two-electron electrochemical oxygen reduction. Energy Environ. Sci. 2022, 15, 4167–4174.

[32]

Wang, Z.; Li, Q. K.; Zhang, C. H.; Cheng, Z. H.; Chen, W. Y.; McHugh, E. A.; Carter, R. A.; Yakobson, B. I.; Tour, J. M. Hydrogen peroxide generation with 100% faradaic efficiency on metal-free carbon black. ACS Catal. 2021, 11, 2454–2459.

[33]

Lim, J. S.; Kim, J. H.; Woo, J.; Baek, D. S.; Ihm, K.; Shin, T. J.; Sa, Y. J.; Joo, S. H. Designing highly active nanoporous carbon H2O2 production electrocatalysts through active site identification. Chem 2021, 7, 3114–3130.

[34]

Silva, F. L.; Reis, R. M.; Barros, W. R. P.; Rocha, R. S.; Lanza, M. R. V. Electrogeneration of hydrogen peroxide in gas diffusion electrodes: Application of iron(II) phthalocyanine as a modifier of carbon black. J. Electroanal. Chem. 2014, 722–723, 32–37.

[35]

Cho, K.; Park, S.; Chang, J.; Han, S. H. Electrochemical modification of ITO with Di-(3-diaminorpropyl)-viologen and its electrocatalytic behavior of the oxygen reduction reaction in an alkaline solution. J. Electroanal. Chem. 2016, 764, 71–78.

[36]

Peng, L. Z.; Liu, P.; Cheng, Q. Q.; Hu, W. J.; Liu, Y. A.; Li, J. S.; Jiang, B.; Jia, X. S.; Yang, H.; Wen, K. Highly effective electrosynthesis of hydrogen peroxide from oxygen on a redox-active cationic covalent triazine network. Chem. Commun. 2018, 54, 4433–4436.

[37]

Liu, T. B.; Wei, X. L.; Nie, Z. M.; Sprenkle, V.; Wang, W. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte. Adv. Energy Mater. 2016, 6, 1501449.

[38]

Lv, Y.; Liu, Y. Y.; Feng, T.; Zhang, J.; Lu, S. F.; Wang, H. N.; Xiang, Y. Structure reorganization-controlled electron transfer of bipyridine derivatives as organic redox couples. J. Mater. Chem. A 2019, 7, 27016–27022.

[39]

Liu, Y. H.; Li, Y. Y.; Zuo, P. P.; Chen, Q. R.; Tang, G. G.; Sun, P.; Yang, Z. J.; Xu, T. W. Screening viologen derivatives for neutral aqueous organic redox flow batteries. ChemSusChem 2020, 13, 2245–2249.

[40]

Wang, S. Y.; Zhang, L. P.; Xia, Z. H.; Roy, A.; Chang, D. W.; Baek, J. B.; Dai, L. M. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2012, 51, 4209–4212.

[41]

Ma, Y.; Li, J. T.; Liao, X. B.; Luo, W.; Huang, W. Z.; Meng, J. S.; Chen, Q.; Xi, S. B.; Yu, R. H.; Zhao, Y. et al. Heterostructure design in bimetallic phthalocyanine boosts oxygen reduction reaction activity and durability. Adv. Funct. Mater. 2020, 30, 2005000.

Nano Research
Pages 12936-12941
Cite this article:
Gao Y, Xu X, Niu Y, et al. Viologens-based redox mediators with tunable HOMO–LUMO energy gap for highly effective hydrogen peroxide electrosynthesis. Nano Research, 2023, 16(12): 12936-12941. https://doi.org/10.1007/s12274-023-5887-4
Topics:
Part of a topical collection:

706

Views

7

Crossref

7

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 12 April 2023
Revised: 31 May 2023
Accepted: 01 June 2023
Published: 03 July 2023
© Tsinghua University Press 2023
Return