AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly efficient and stable electrocatalyst for hydrogen evolution by molybdenum doped Ni-Co phosphide nanoneedles at high current density

Chengyu Huang1,§Zhonghong Xia1,§Jing Wang2,§Jing Zhang1Chenfei Zhao1Xingli Zou3Shichun Mu4Jiujun Zhang1Xionggang Lu3Hong Jin Fan5Shengjuan Huo1Yufeng Zhao1( )
College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 639798

§ Chengyu Huang, Zhonghong Xia, and Jing Wang contributed equally to this work.

Show Author Information

Graphical Abstract

The microsphere structure composed of nanoneedles Mo-doped NiCoP nanoneedles deposited on nickel foam (NF) using a gradient hydrothermal method and phosphation processes. The unique microsphere structure and the small-sized effect of nanoneedles formed by the gradient hydrothermal method, which provided good gas release ability and electrocatalytic hydrogen evolution performance.

Abstract

There is an increasingly urgent need to develop cost-effective electrocatalysts with high catalytic activity and stability as alternatives to the traditional Pt/C in catalysts in water electrolysis. In this study, microspheres composed of Mo-doped NiCoP nanoneedles supported on nickel foam were prepared to address this challenge. The results show that the nanoneedles provide sufficient active sites for efficient electron transfer; the small-sized effect and the micro-scale roughness enhance the entry of reactants and the release of hydrogen bubbles; the Mo doping effectively improves the electrocatalytic performance of NiCoP in alkaline media. The catalyst exhibits low hydrogen evolution overpotentials of 38.5 and 217.5 mV at a current density of 10 mA·cm−2 and high current density of 500 mA·cm−2, respectively, and only 1.978 V is required to achieve a current density of 1000 mA·cm−2 for overall water splitting. Density functional theory (DFT) calculations show that the improved hydrogen evolution performance can be explained as a result of the Mo doping, which serves to reduce the interaction between NiCoP and intermediates, optimize the Gibbs free energy of hydrogen adsorption ( ΔG*H), and accelerate the desorption rate of *OH. This study provides a promising solution to the ongoing challenge of designing efficient electrocatalysts for high-current-density hydrogen production.

Electronic Supplementary Material

Download File(s)
12274_2023_5892_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Bae, S. Y.; Jeon, I. Y.; Mahmood, J.; Baek, J. B. Molybdenum-based carbon hybrid materials to enhance the hydrogen evolution reaction. Chem. -Eur. J. 2018, 24, 18158–18179.

[2]

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

[3]

Liu, J. L.; Zhu, D. D.; Zheng, Y.; Vasileff, A.; Qiao, S. Z. Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions. ACS Catal. 2018, 8, 6707–6732.

[4]

Yu, F.; Yu, L.; Mishra, I. K.; Yu, Y.; Ren, Z. F.; Zhou, H. Q. Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis. Mater. Today Phys. 2018, 7, 121–138.

[5]

Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.

[6]

Zhu, Y. P.; Ma, T. Y.; Jaroniec, M.; Qiao, S. Z. Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem., Int. Ed. 2017, 56, 1324–1328.

[7]

Abdelkader-Fernández, V. K.; Fernandes, D. M.; Balula, S. S.; Cunha-Silva, L.; Pérez-Mendoza, M. J.; López-Garzón, F. J.; Pereira, M. F.; Freire, C. Noble-metal-free MOF-74-derived nanocarbons: Insights on metal composition and doping effects on the electrocatalytic activity toward oxygen reactions. ACS Appl. Energy Mater. 2019, 2, 1854–1867.

[8]

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

[9]

Anjum, M. A. R.; Lee, J. S. Sulfur and nitrogen dual-doped molybdenum phosphide nanocrystallites as an active and stable hydrogen evolution reaction electrocatalyst in acidic and alkaline media. ACS Catal. 2017, 7, 3030–3038.

[10]

Yu, S. H.; Chua, D. H. C. Toward high-performance and low-cost hydrogen evolution reaction electrocatalysts: Nanostructuring cobalt phosphide (CoP) particles on carbon fiber paper. ACS Appl. Mater. Interfaces 2018, 10, 14777–14785.

[11]

Xu, K. K.; Fu, X. L.; Li, H.; Peng, Z. J. A novel composite of network-like tungsten phosphide nanostructures grown on carbon fibers with enhanced electrocatalytic hydrogen evolution efficiency. Appl. Surf. Sci. 2018, 456, 230–237.

[12]

Tian, L. H.; Yan, X. D.; Chen, X. B. Electrochemical activity of iron phosphide nanoparticles in hydrogen evolution reaction. ACS Catal. 2016, 6, 5441–5448.

[13]

Tian, J. Q.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem., Int. Ed. 2014, 53, 9577–9581.

[14]

Zhao, D. P.; Dai, M. Z.; Liu, H. Q.; Xiao, L.; Wu, X.; Xia, H. Constructing high performance hybrid battery and electrocatalyst by heterostructured NiCo2O4@NiWS nanosheets. Cryst. Growth Des. 2019, 19, 1921–1929.

[15]

Dai, M. Z.; Liu, H. Q.; Zhao, D. P.; Zhu, X. F.; Umar, A.; Algarni, H.; Wu, X. Ni foam substrates modified with a ZnCo2O4 nanowire-coated Ni(OH)2 nanosheet electrode for hybrid capacitors and electrocatalysts. ACS Appl. Nano Mater. 2021, 4, 5461–5468.

[16]

Zhao, D. P.; Liu, H. Q.; Wu, X. Bi-interface induced multi-active MCo2O4@MCo2S4@PPy (M = Ni, Zn) sandwich structure for energy storage and electrocatalysis. Nano Energy 2019, 57, 363–370.

[17]

Zhang, R.; Wang, X. X.; Yu, S. J.; Wen, T.; Zhu, X. W.; Yang, F. X.; Sun, X. N.; Wang, X. K.; Hu, W. P. Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1605502.

[18]

Luo, Q. M.; Zhao, Y. W.; Sun, L.; Wang, C.; Xin, H. Q.; Song, J. X.; Li, D. Y.; Ma, F. Interface oxygen vacancy enhanced alkaline hydrogen evolution activity of cobalt-iron phosphide/CeO2 hollow nanorods. Chem. Eng. J. 2022, 437, 135376.

[19]

Sun, S. F.; Zheng, M.; Cheng, P. F.; Wu, F. G.; Xu, L. P. Porous bimetallic cobalt-iron phosphide nanofoam for efficient and stable oxygen evolution catalysis. J. Colloid Interface Sci. 2022, 626, 515–523.

[20]

Zhang, G.; Wang, G. C.; Liu, Y.; Liu, H. J.; Qu, J. H.; Li, J. H. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J. Am. Chem. Soc. 2016, 138, 14686–14693.

[21]

Wu, Y. Q.; Tao, X.; Qing, Y.; Xu, H.; Yang, F.; Luo, S.; Tian, C. H.; Liu, M.; Lu, X. H. Cr-doped FeNi-P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting. Adv. Mater. 2019, 31, 1900178.

[22]

Hu, J. J.; Peng, L.; Primo, A.; Albero, J.; García, H. High-current water electrolysis performance of metal phosphides grafted on porous 3D N-doped graphene prepared without using phosphine. Cell Rep. Phys. Sci. 2022, 3, 100873.

[23]

Liu, L. R.; Zhang, Y. J.; Wang, J. W.; Yao, R.; Wu, Y.; Zhao, Q.; Li, J. P.; Liu, G. In situ growth Fe and V co-doped Ni3S2 for efficient oxygen evolution reaction at large current densities. Int. J. Hydrog. Energy 2022, 47, 14422–14431.

[24]

Zhang, X. Y.; Zhu, Y. R.; Chen, Y.; Dou, S. Y.; Chen, X. Y.; Dong, B.; Guo, B. Y.; Liu, D. P.; Liu, C. G.; Chai, Y. M. Hydrogen evolution under large-current-density based on fluorine-doped cobalt-iron phosphides. Chem. Eng. J. 2020, 399, 125831.

[25]

Li, H. L.; Zhang, Y. W.; Wang, L.; Tian, J. Q.; Sun, X. P. Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chem. Commun. 2011, 47, 961–963.

[26]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[27]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

[28]

Wu, X.; Vargas, M. C.; Nayak, S.; Lotrich, V.; Scoles, G. Towards extending the applicability of density functional theory to weakly bound systems. J. Chem. Phys. 2001, 115, 8748–8757.

[29]

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23.

[30]

Zhao, S. T.; Wang, Q. G.; Dong, S. B.; Chen, J.; Wang, S. M. Phosphated NiCo2O4 nanoneedle arrays on flexible carbon filaments for effective oxygen evolution reaction in alkaline aqueous conditions: Cooperation of small-sized effect and heteroatomic doping activation. Chem. Eng. J. 2020, 401, 126156.

[31]

Wang, X. Y.; Tuo, Y. X.; Zhou, Y.; Wang, D.; Wang, S. T.; Zhang, J. Ta-doping triggered electronic structural engineering and strain effect in NiFe LDH for enhanced water oxidation. Chem. Eng. J. 2021, 403, 126297.

[32]

Pan, Y.; Liu, Y. R.; Zhao, J. C.; Yang, K.; Liang, J. L.; Liu, D. D.; Hu, W. H.; Liu, D. P.; Liu, Y. Q.; Liu, C. G. Monodispersed nickel phosphide nanocrystals with different phases: Synthesis, characterization and electrocatalytic properties for hydrogen evolution. J. Mater. Chem. A 2015, 3, 1656–1665.

[33]

Du, C.; Yang, L.; Yang, F. L.; Cheng, G. Z.; Luo, W. Nest-like NiCoP for highly efficient overall water splitting. ACS Catal. 2017, 7, 4131–4137.

[34]

Hu, E. L.; Feng, Y. F.; Nai, J. W.; Zhao, D.; Hu, Y.; Lou, X. W. Construction of hierarchical Ni-Co-P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ. Sci. 2018, 11, 872–880.

[35]

Polo, A.; Dozzi, M. V.; Grigioni, I.; Lhermitte, C.; Plainpan, N.; Moretti, L.; Cerullo, G.; Sivula, K.; Selli, E. Multiple Effects Induced by Mo6+ Doping in BiVO4 Photoanodes. Solar RRL 2022, 6, 2200349.

[36]

Mendoza-Sánchez, B.; Brousse, T.; Ramirez-Castro, C.; Nicolosi, V.; S. Grant, P. An investigation of nanostructured thin film α-MoO3 based supercapacitor electrodes in an aqueous electrolyte. Electrochim. Acta 2013, 91, 253–260.

[37]

Cui, Z.; Ge, Y. C.; Chu, H.; Baines, R.; Dong, P.; Tang, J. H.; Yang, Y.; Ajayan, P. M.; Ye, M. X.; Shen, J. F. Controlled synthesis of Mo-doped Ni3S2 nano-rods: An efficient and stable electro-catalyst for water splitting. J. Mater. Chem. A 2017, 5, 1595–1602.

[38]

Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

[39]

You, B.; Sun, Y. J. Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 2018, 51, 1571–1580.

[40]

Liu, H. Q.; Zhao, D. P.; Dai, M. Z.; Zhu, X. F.; Qu, F. Y.; Umar, A.; Wu, X. PEDOT decorated CoNi2S4 nanosheets electrode as bifunctional electrocatalyst for enhanced electrocatalysis. Chem. Eng. J. 2022, 428, 131183.

[41]

Jiang, X. L.; Jang, H.; Liu, S. G.; Li, Z. J.; Kim, M. G.; Li, C.; Qin, Q.; Liu, X. E.; Cho, J. The heterostructure of Ru2P/WO3/NPC synergistically promotes H2O dissociation for improved hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 4110–4116.

[42]

Zhang, Y. Y.; Lei, H. W.; Duan, D. L.; Villota, E.; Liu, C.; Ruan, R. New insight into the mechanism of the hydrogen evolution reaction on MoP(001) from first principles. ACS Appl. Mater. Interfaces 2018, 10, 20429–20439.

[43]

Men, Y. N.; Li, P.; Yang, F. L.; Cheng, G. Z.; Chen, S. L.; Luo, W. Nitrogen-doped CoP as robust electrocatalyst for high-efficiency pH-universal hydrogen evolution reaction. Appl. Catal. B: Environ. 2019, 253, 21–27.

[44]

Du, X. C.; Huang, J. W.; Zhang, J. J.; Yan, Y. C.; Wu, C. Y.; Hu, Y.; Yan, C. Y.; Lei, T. Y.; Chen, W.; Fan, C. et al. Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting. Angew. Chem., Int. Ed. 2019, 58, 4484–4502.

[45]

Zhang, B.; Liu, J.; Wang, J. S.; Ruan, Y. J.; Ji, X.; Xu, K.; Chen, C.; Wan, H. Z.; Miao, L.; Jiang, J. J. Interface engineering: The Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 2017, 37, 74–80.

[46]

Chen, J. P.; Jin, Q. Y.; Li, Y. W.; Li, Y.; Cui, H.; Wang, C. X. Design superior alkaline hydrogen evolution electrocatalyst by engineering dual active sites for water dissociation and hydrogen desorption. ACS Appl. Mater. Interfaces 2019, 11, 38771–38778.

Nano Research
Pages 1066-1074
Cite this article:
Huang C, Xia Z, Wang J, et al. Highly efficient and stable electrocatalyst for hydrogen evolution by molybdenum doped Ni-Co phosphide nanoneedles at high current density. Nano Research, 2024, 17(3): 1066-1074. https://doi.org/10.1007/s12274-023-5892-7
Topics:

1156

Views

18

Crossref

25

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 05 May 2023
Revised: 30 May 2023
Accepted: 02 June 2023
Published: 26 July 2023
© Tsinghua University Press 2023
Return