AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Interface-induced polymerization strategy for constructing titanium dioxide embedded carbon porous framework with enhanced chemical immobilization towards lithium polysulfides

Yue Ouyang1,§Xiaoxiao Li1,§Jiexin Zhu4,§Wei Zong1,4( )Yuhang Dai4Xuan Gao4Wei Zhang4Shengyuan Yang1Roohollah Bagherzadeh3Feili Lai5Yue-E Miao1( )Tianxi Liu1,2
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
Advanced Fibrous Materials LAB, Institute for Advanced Textile Materials and Technologies (ATMT), School of Advanced Materials and Processes, Amirkabir University of Technology, Tehran 15914, Iran
Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium

§ Yue Ouyang, Xiaoxiao Li, and Jiexin Zhu contributed equally to this work.

Show Author Information

Graphical Abstract

A titanium dioxide nanoparticle embedded in nitrogen-doped porous carbon nanofiber composite is constructed via an interface-induced polymerization strategy to serve as an ideal sulfur host for Li-S batteries, presenting high active material utilization, superb rate capability, and prominent cycling lifespan even under high sulfur loading and lean electrolyte conditions.

Abstract

The shuttle effect induced by soluble lithium polysulfides (LiPSs) is known as one of the crucial issues that limit the practical applications of lithium-sulfur (Li-S) batteries. Herein, a titanium dioxide nanoparticle embedded in nitrogen-doped porous carbon nanofiber (TiO2@NCNF) composite is constructed via an interface-induced polymerization strategy to serve as an ideal sulfur host. Under the protection of the nanofiber walls, the uniformly dispersed TiO2 nanocrystalline can act as capturing centers to constantly immobilize LiPSs towards durable sulfur chemistry. Besides, the mesoporous microstructure in the fibrous framework endows the TiO2@NCNF host with strong physical reservation for sulfur and LiPSs, sufficient pathways for electron/ion transfer, and excellent endurance for volume change. As expected, the sulfur-loaded TiO2@NCNF composite electrode presents a fabulous rate performance and long cycle lifespan (capacity fading rate of 0.062% per cycle over 500 cycles) at 2.0 C. Furthermore, the assembled Li-S batteries harvest superb areal capacity and cycling stability even under high sulfur loading and lean electrolyte conditions.

Electronic Supplementary Material

Download File(s)
12274_2023_5894_MOESM1_ESM.pdf (696.4 KB)

References

[1]

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

[2]

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

[3]

Zu, C. X.; Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 2011, 4, 2614–2624.

[4]

Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006.

[5]

Van Noorden, R. The rechargeable revolution: A better battery. Nature 2014, 507, 26–28.

[6]

Ding, Y. F.; Cheng, Q. S.; Wu, J. H.; Yan, T. R.; Shi, Z. X.; Wang, M. L.; Yang, D. Z.; Wang, P.; Zhang, L.; Sun, J. Y. Enhanced dual-directional sulfur redox via a biotemplated single-atomic Fe-N2 mediator promises durable Li-S batteries. Adv. Mater. 2022, 34, 2202256.

[7]

Ji, X. L.; Nazar, L. F. Advances in Li-S batteries. J. Mater. Chem. 2010, 20, 9821–9826.

[8]

Li, G. R.; Chen, Z. W.; Lu, J. Lithium-sulfur batteries for commercial applications. Chem 2018, 4, 3–7.

[9]

Ouyang, Y.; Zong, W.; Zhu, X. B.; Mo, L. L.; Chao, G. J.; Fan, W.; Lai, F. L.; Miao, Y. E.; Liu, T. X.; Yu, Y. A universal spinning-coordinating strategy to construct continuous metal-nitrogen-carbon heterointerface with boosted lithium polysulfides immobilization for 3D-printed Li-S batteries. Adv. Sci. 2022, 9, 2203181.

[10]

Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.

[11]

Xu, J.; Zhang, H.; Yu, F. T.; Cao, Y. J.; Liao, M. C.; Dong, X. L.; Wang, Y. G. Realizing all-climate Li-S batteries by using a porous sub-nano aromatic framework. Angew. Chem., Int. Ed. 2022, 61, e202211933.

[12]

Lei, J.; Fan, X. X.; Liu, T.; Xu, P.; Hou, Q.; Li, K.; Yuan, R. M.; Zheng, M. S.; Dong, Q. F.; Chen, J. J. Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries. Nat. Commun. 2022, 13, 202.

[13]

Cao, K. Z.; Liu, H. Q.; Li, Y.; Wang, Y. J.; Jiao, L. F. Encapsulating sulfur in δ-MnO2 at room temperature for Li-S battery cathode. Energy Storage Mater. 2017, 9, 78–84.

[14]

Huang, X. K.; Shi, K. Y.; Yang, J.; Mao, G.; Chen, J. H. MnO2-GO double-shelled sulfur (S@MnO2@GO) as a cathode for Li-S batteries with improved rate capability and cyclic performance. J. Power Sources 2017, 356, 72–79.

[15]

Li, Q.; Ma, Z. P.; Zhao, J. H.; Shen, K.; Shi, T. Q.; Xie, Y. Z.; Fan, Y. Q.; Qin, X. J.; Shao, G. J. A flexible self-supporting ultralong MnO2 nanowires-expanded graphite nanosheets current collector with enhanced catalytic reaction kinetics for high-loading lithium-sulfur batteries. J. Power Sources 2022, 521, 230929.

[16]

Lee, J.; Moon, J. H. Polyhedral TiO2 particle-based cathode for Li-S batteries with high volumetric capacity and high performance in lean electrolyte. Chem. Eng. J. 2020, 399, 125670.

[17]

Yu, M. P.; Ma, J. S.; Song, H. Q.; Wang, A. J.; Tian, F. Y.; Wang, Y. S.; Qiu, H.; Wang, R. M. Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium-sulfur batteries. Energy Environ. Sci. 2016, 9, 1495–1503.

[18]

Cai, J. S.; Sun, Z. T.; Cai, W. L.; Wei, N.; Fan, Y. X.; Liu, Z. F.; Zhang, Q.; Sun, J. Y. A robust ternary heterostructured electrocatalyst with conformal graphene chainmail for expediting bi-directional sulfur redox in Li-S batteries. Adv. Funct. Mater. 2021, 31, 2100586.

[19]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

[20]

Xin, S. S.; Liu, T.; Li, J.; Cui, H. T.; Liu, Y. Y.; Liu, K. H.; Yang, Y. Z.; Wang, M. R. Coupling of oxygen vacancies and heterostructure on Fe3O4 via an anion doping strategy to boost catalytic activity for lithium-sulfur batteries. Small 2023, 2207924.

[21]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[22]

Rehman, S.; Guo, S. J.; Hou, Y. L. Rational design of Si/SiO2@hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li-S battery. Adv. Mater. 2016, 28, 3167–3172.

[23]

Deng, S. G.; Guo, T. Z.; Heier, J.; Zhang, C. F. Unraveling polysulfide’s adsorption and electrocatalytic conversion on metal oxides for Li-S batteries. Adv. Sci. 2023, 10, 2204930.

[24]

Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

[25]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[26]

Li, W. W.; Yang, B.; Pang, R. X.; Zhang, M. Y. Sandwiched aramid nanofiber/Al2O3-coated polyolefin separators for advanced lithium-sulfur batteries. Compos. Commun. 2023, 38, 101489.

[27]

Zhen, M. M.; Jiang, K. L.; Guo, S. Q.; Shen, B. X.; Liu, H. L. Suitable lithium polysulfides diffusion and adsorption on CNTs@TiO2-bronze nanosheets surface for high-performance lithium-sulfur batteries. Nano Res. 2022, 15, 933–941.

[28]

Zhuang, Z. C.; Wang, F. F.; Naidu, R.; Chen, Z. L. Biosynthesis of Pd-Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power Sources 2015, 291, 132–137.

[29]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[30]

Wei Seh, Z.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

[31]

Zong, W.; Gao, H. Q.; Ouyang, Y.; Chu, K. B.; Guo, H. L.; Zhang, L. Q.; Zhang, W.; Chen, R. W.; Dai, Y. H.; Guo, F. et al. Bio-inspired aerobic-hydrophobic janus interface on partially carbonized iron heterostructure promotes bifunctional nitrogen fixation. Angew. Chem., Int. Ed. 2023, 62, e202218122.

[32]

Liu, K.; Gu, S.; Yuan, H. M.; Wang, H.; Tan, W.; Jiang, F.; Chen, J. J.; Liao, K. M.; Yan, C. L.; Yang, F. et al. Hierarchical mesoporous heteroatom-doped carbon accelerating the adsorption and conversion of polysulfide for high performance lithium-sulfur batteries. Compos. Commun. 2022, 30, 101079.

[33]

Zong, W.; Chui, N. B.; Tian, Z. H.; Li, Y. Y.; Yang, C.; Rao, D. W.; Wang, W.; Huang, J. J.; Wang, J. T.; Lai, F. L. et al. Ultrafine MoP nanoparticle splotched nitrogen-doped carbon nanosheets enabling high-performance 3D-printed potassium-ion hybrid capacitors. Adv. Sci. 2021, 8, 2004142.

[34]
Li, X. T.; Chou, J.; Zhu, Y. H.; Wang, W. P.; Xin, S.; Guo, Y. G. Hydrogen isotope effects: A new path to high-energy aqueous rechargeable Li/Na-ion batteries. eScience, in press, https://doi.org/10.1016/j.esci.2023.100121.
[35]

Li, Y.; Wang, X. Z.; Sun, M. H.; Xiao, J.; Zhang, B. L.; Ai, L. S.; Zhao, Z. B.; Qiu, J. S. CoSe nanoparticle embedded B, N-codoped carbon nanotube array as a dual-functional host for a high-performance Li-S full battery. ACS Nano 2022, 16, 17008–17020.

[36]

Fang, M. M.; Chen, Z. M.; Liu, Y.; Quan, J. P.; Yang, C.; Zhu, L. C.; Xu, Q. B.; Xu, Q. Design and synthesis of novel sandwich-type C@TiO2@C hollow microspheres as efficient sulfur hosts for advanced lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 1630–1638.

[37]

Liu, M.; Deng, N. P.; Ju, J. G.; Fan, L. L.; Wang, L. Y.; Li, Z. J.; Zhao, H. J.; Yang, G.; Kang, W. M.; Yan, J. et al. A review: Electrospun nanofiber materials for lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1905467.

[38]

Zhang, Y. S.; Zhang, P.; Li, B.; Zhang, S. J.; Liu, K. L.; Hou, R. H.; Zhang, X. L.; Silva, S. R. P.; Shao, G. S. Vertically aligned graphene nanosheets on multi-yolk/shell structured TiC@C nanofibers for stable Li-S batteries. Energy Storage Mater. 2020, 27, 159–168.

[39]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

[40]

Li, S. D.; Zhuang, Z. C.; Xia, L. X.; Zhu, J. X.; Liu, Z.; He, R. H.; Luo, W.; Huang, W. Z.; Shi, C. W.; Zhao, Y. et al. Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater. 2023, 66, 160–168.

[41]

Li, C. P.; Qiu, M.; Li, R. L.; Li, X.; Wang, M. X.; He, J. B.; Lin, G. G.; Xiao, L. R.; Qian, Q. R.; Chen, Q. H. et al. Electrospinning engineering enables high-performance sodium-ion batteries. Adv. Fiber Mater. 2022, 4, 43–65.

[42]

Zheng, Z. M.; Li, Z.; Yang, Z. Hierarchical carbon fibers integrated cathode confining high-loading sulfur for Li-S batteries. Compos. Commun. 2022, 32, 101192.

[43]

Tan, K.; Tan, Z. L.; Liu, S.; Zhao, G. Q.; Liu, Y.; Hou, L. R.; Yuan, C. Z. Synergistic design of core–shell V3S4@C hosts and homogeneous catalysts promoting polysulfide chemisorption and conversion for Li-S batteries. J. Mater. Chem. A 2023, 11, 2233–2245.

[44]

Zong, W.; Guo, H. L.; Ouyang, Y.; Mo, L. L.; Zhou, C. Y.; Chao, G. J.; Hofkens, J.; Xu, Y.; Wang, W.; Miao, Y. E. et al. Topochemistry-driven synthesis of transition-metal selenides with weakened van der waals force to enable 3D-printed Na-ion hybrid capacitors. Adv. Funct. Mater. 2022, 32, 2110016.

[45]

Wang, Z.; Zou, Y.; Li, Y. W.; Cheng, Y. Y. Metal-containing polydopamine nanomaterials: Catalysis, energy, and theranostics. Small 2020, 16, 1907042.

[46]

Su, Y. J.; Li, W. X.; Yuan, L.; Chen, C. X.; Pan, H.; Xie, G. Z.; Conta, G.; Ferrier, S.; Zhao, X.; Chen, G. R. et al. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy 2021, 89, 106321.

[47]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[48]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[49]

Zhao, C.; Xu, G. L.; Yu, Z.; Zhang, L. C.; Hwang, I.; Mo, Y. X.; Ren, Y. X.; Cheng, L.; Sun, C. J.; Ren, Y. et al. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 2021, 16, 166–173.

[50]

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

[51]

Chen, R. X.; Zhou, Y. C.; Li, X. D. Cotton-derived Fe/Fe3C-encapsulated carbon nanotubes for high-performance lithium-sulfur batteries. Nano Lett. 2022, 22, 1217–1224.

[52]

Dai, Y. H.; Zhang, C. Y.; Zhang, W.; Cui, L. M.; Ye, C. M.; Hong, X. F.; Li, J. H.; Chen, R. W.; Zong, W.; Gao, X. et al. Reversible Zn metal anodes enabled by trace amounts of underpotential deposition initiators. Angew. Chem., Int. Ed. 2023, 62, e202301192.

[53]

Luo, J.; Liu, X. F.; Lei, W.; Jia, Q. L.; Zhang, S. W.; Zhang, H. J. Self-standing lotus root-like host materials for high-performance lithium-sulfur batteries. Adv. Fiber Mater. 2022, 4, 1656–1668.

[54]

Wang, P. F.; Dai, X.; Xu, P.; Hu, S. J.; Xiong, X. Y.; Zou, K. Y.; Guo, S. W.; Sun, J. J.; Zhang, C. F.; Liu, Y. N. et al. Hierarchical and lamellar porous carbon as interconnected sulfur host and polysulfide-proof interlayer for Li-S batteries. eScience 2023, 3, 100088.

[55]

Guo, M.; Zhu, H. Y.; Wan, P. F.; Xu, F.; Wang, C. H.; Lu, S. J.; Zhang, Y. F.; Fan, H. S.; Xu, J. Freestanding and ultra-flexible PAN/ZIF-67 hybrid membrane with controlled porosity for high-performance and high-safety lithium batteries separator. Adv. Fiber Mater. 2022, 4, 1511–1524.

[56]

Zhu, J. X.; Xia, L. X.; Yu, R. H.; Lu, R. H.; Li, J. T.; He, R. H.; Wu, Y. C.; Zhang, W.; Hong, X. F.; Chen, W. et al. Ultrahigh stable methanol oxidation enabled by a high hydroxyl concentration on Pt clusters/MXene interfaces. J. Am. Chem. Soc. 2022, 144, 15529–15538.

[57]

Kang, Q.; Zhuang, Z. C.; Li, Y.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res. 2023, 16, 9240–9249.

[58]

Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.

[59]

Wang, J. W.; Cao, S. F.; Yang, L. K.; Zhang, Y.; Xing, K.; Lu, X. Q.; Xu, J. Metastable marcasite NiSe2 nanodendrites on carbon fiber clothes to suppress polysulfide shuttling for high-performance lithium-sulfur batteries. Nanoscale 2021, 13, 16487–16498.

Nano Research
Pages 1473-1481
Cite this article:
Ouyang Y, Li X, Zhu J, et al. Interface-induced polymerization strategy for constructing titanium dioxide embedded carbon porous framework with enhanced chemical immobilization towards lithium polysulfides. Nano Research, 2024, 17(3): 1473-1481. https://doi.org/10.1007/s12274-023-5894-5
Topics:

730

Views

7

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 06 May 2023
Revised: 01 June 2023
Accepted: 03 June 2023
Published: 25 July 2023
© Tsinghua University Press 2023
Return