AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Glycerol solutions of highly concentrated biomineral counter-ions towards water-responsive mineralization: Demonstration on bacterial cellulose and its application in hard tissue repair

Yunfei Zhao1Xiaohao Liu1Zhi Zhou1Chaobo Feng1Nan Luo2Jiajun Yan1Shuo Tan1Yang Lu1Feng Chen1( )Bing-Qiang Lu1( )Shisheng He1( )
Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
Department of Preventive Dentistry, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, China
Show Author Information

Graphical Abstract

The mineralizing solution of highly concentrated counter-ions (MSCIs), which is an organic mineralizing solution, can hold different kinds of highly concentrated mineral counter-ions in stable state at room temperature for a long time (more than one week) without any stabilizer. Through mineralization of bacterial cellulose membrane, MSCI exhibits high infiltrability, high mineralizing efficacy, and provides feasible regulations over mineralization rate, mineral content, phase, and ion dopants. The mineralized bacterial cellulose (BC) membranes made by MSCI show potentials in hard tissue repair as demonstrated in a rabbit median sternotomy model.

Abstract

Mineralization has found widespread use in the fabrication of composite biomaterials for hard tissue regeneration. The current mineralization processes are mainly carried out in neutral aqueous solutions of biomineral counter-ions (a pair of cation and anion that form the corresponding minerals at certain conditions), which are stable only at very low concentrations. This typically results in inefficient mineralization and weak control over biomineral formation. Here, we find that, in the organic solvent glycerol, a variety of biomineral counter-ions (e.g., Ca/PO4, Ca/CO3, Ca/SO4, Mg/PO4, or Fe/OH) corresponding to distinct biominerals at significantly high concentrations (up to hundreds-fold greater than those of simulated body fluid (SBF)) are able to form translucent and stable solutions (mineralizing solution of highly concentrated counter-ions (MSCIs)), and mineralization can be triggered upon them with external solvents (e.g., water or ethanol). Furthermore, with pristine bacterial cellulose (BC) membrane as a model, we demonstrate an effective and controllable mineralization performance of MSCIs on organic substrates. This approach not only forms the homogeneous biominerals on the BC fibers and in the interspaces, but also provides regulations over mineralization rate, mineral content, phase, and dopants. The resulting mineralized BC membranes (MBCs) exhibit high cytocompatibility and favor the proliferation of rat bone marrow mesenchymal stem cells (rBMSC). Following this, we prepare a mineralized bone suture (MBS) from MBC for non-weight bearing bone fixation, which then is tested on a rabbit median sternotomy model. It shows firm fixation of the rabbit sternum without causing discernible toxicity or inflammatory response. This study, by extending the mineralization to the organic solution system of highly concentrated counter-ions, develops a promising strategy to design and build targeted mineral-based composites.

Electronic Supplementary Material

Download File(s)
12274_2023_5897_MOESM1_ESM.pdf (875.6 KB)

References

[1]

Yao, S. S.; Jin, B.; Liu, Z. M.; Shao, C. Y.; Zhao, R. B.; Wang, X. Y.; Tang, R. K. Biomineralization: From material tactics to biological strategy. Adv. Mater. 2017, 29, 1605903.

[2]

Florencio-Silva, R.; da Silva Sasso, G. R.; Sasso-Cerri, E.; Simões, M. J.; Cerri, P. S. Biology of bone tissue: Structure, function, and factors that influence bone cells. Biomed Res. Int. 2015, 2015, 421746.

[3]

Zhao, Y. Q.; Tang, R. K. Improvement of organisms by biomimetic mineralization: A material incorporation strategy for biological modification. Acta Biomater. 2021, 120, 57–80.

[4]

Chen, W.; Wang, G. C.; Tang, R. K. Nanomodification of living organisms by biomimetic mineralization. Nano Res. 2014, 7, 1404–1428.

[5]

Gil, J.; Manero, J. M.; Ruperez, E.; Velasco-Ortega, E.; Jiménez-Guerra, A.; Ortiz-García, I.; Monsalve-Guil, L. Mineralization of titanium surfaces: Biomimetic implants. Materials 2021, 14, 2879.

[6]

Zhang, B. J.; Li, J.; He, L.; Huang, H.; Weng, J. Bio-surface coated titanium scaffolds with cancellous bone-like biomimetic structure for enhanced bone tissue regeneration. Acta Biomater. 2020, 114, 431–448.

[7]

Lui, F. H. Y.; Mobbs, R. J.; Wang, Y.; Koshy, P.; Lucien, F. P.; Zhou, D. W.; Sorrell, C. C. Dynamic mineralization: Low-temperature, rapid, and multidirectional process to encapsulate polyether-ether-ketone with carbonate-rich hydroxyapatite for osseointegration. Adv. Mater. Interfaces 2021, 8, 2100333.

[8]

Chen, G. D.; Liang, X. Y.; Zhang, P.; Lin, S. T.; Cai, C. C.; Yu, Z. Y.; Liu, J. Bioinspired 3D printing of functional materials by harnessing enzyme-induced biomineralization. Adv. Funct. Mater. 2022, 32, 2113262.

[9]

Szcześ, A.; Hołysz, L.; Chibowski, E. Synthesis of hydroxyapatite for biomedical applications. Adv. Colloid Interface Sci. 2017, 249, 321–330.

[10]

Aditya, T.; Allain, J. P.; Jaramillo, C.; Restrepo, A. M. Surface modification of bacterial cellulose for biomedical applications. Int. J. Mol. Sci. 2022, 23, 610.

[11]

Ping, H.; Wagermaier, W.; Horbelt, N.; Scoppola, E.; Li, C. H.; Werner, P.; Fu, Z. Y.; Fratzl, P. Mineralization generates megapascal contractile stresses in collagen fibrils. Science 2022, 376, 188–192.

[12]

Hutchens, S. A.; Benson, R. S.; Evans, B. R.; O’Neill, H. M.; Rawn, C. J. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 2006, 27, 4661–4670.

[13]

Wu, X. C.; Zhang, T. F.; Hoff, B.; Suvarnapathaki, S.; Lantigua, D.; McCarthy, C.; Wu, B.; Camci-Unal, G. Mineralized hydrogels induce bone regeneration in critical size cranial defects. Adv. Healthcare Mater. 2021, 10, 2001101.

[14]

Cheng, Z.; Ye, Z.; Natan, A.; Ma, Y.; Li, H. Y.; Chen, Y.; Wan, L. Q.; Aparicio, C.; Zhu, H. L. Bone-inspired mineralization with highly aligned cellulose nanofibers as template. ACS Appl. Mater. Interfaces 2019, 11, 42486–42495.

[15]

Fleisch, H. Inhibitors of calcium phosphate precipitation and their role in biological mineralization. J. Cryst. Growth 1981, 53, 120–134.

[16]

Ma, Y. X.; Hoff, S. E.; Huang, X. Q.; Liu, J.; Wan, Q. Q.; Song, Q.; Gu, J. T.; Heinz, H.; Tay, F. R.; Niu, L. N. Involvement of prenucleation clusters in calcium phosphate mineralization of collagen. Acta Biomater. 2021, 120, 213–223.

[17]

Gull, M.; Pasek, M. A. The role of glycerol and its derivatives in the biochemistry of living organisms, and their prebiotic origin and significance in the evolution of life. Catalysts 2021, 11, 86.

[18]

Brisson, D.; Vohl, M. C.; St-Pierre, J.; Hudson, T. J.; Gaudet, D. Glycerol: A neglected variable in metabolic processes. Bioessays 2001, 23, 534–542.

[19]

Gorgieva, S.; Trček, J. Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials 2019, 9, 1352.

[20]

Wang, J.; Tavakoli, J.; Tang, Y. H. Bacterial cellulose production, properties and applications with different culture methods—A review. Carbohydr. Polym. 2019, 219, 63–76.

[21]

Portela, R.; Leal, C. R.; Almeida, P. L.; Sobral, R. G. Bacterial cellulose: A versatile biopolymer for wound dressing applications. Microb. Biotechnol. 2019, 12, 586–610.

[22]

Lee, S. E.; Park, Y. S. The role of bacterial cellulose in artificial blood vessels. Mol. Cell. Toxicol. 2017, 13, 257–261.

[23]

Gorgieva, S. Bacterial cellulose as a versatile platform for research and development of biomedical materials. Processes 2020, 8, 624.

[24]

Maia, M. T.; Luz, É. P. C. G.; Andrade, F. K.; de Freitas Rosa, M.; de Fátima Borges, M.; Arcanjo, M. R. A.; Vieira, R. S. Advances in bacterial cellulose/strontium apatite composites for bone applications. Polym. Rev. 2021, 61, 736–764.

[25]

Sun, B. J.; Wei, F.; Li, W. P.; Xu, X. R.; Zhang, H.; Liu, M. D.; Lin, J. B.; Ma, B.; Chen, C. T.; Sun, D. P. Macroporous bacterial cellulose grafted by oligopeptides induces biomimetic mineralization via interfacial wettability. Colloids Surf. B 2019, 183, 110457.

[26]

Katepetch, C.; Rujiravanit, R. Synthesis of magnetic nanoparticle into bacterial cellulose matrix by ammonia gas-enhancing in situ co-precipitation method. Carbohydr. Polym. 2011, 86, 162–170.

[27]

Wang, Z.; Zhou, Z. H.; Fan, J. Y.; Zhang, L. Q.; Zhang, Z. X.; Wu, Z. F.; Shi, Y.; Zheng, H. Y.; Zhang, Z. Y.; Tang, R. K. et al. Hydroxypropylmethylcellulose as a film and hydrogel carrier for ACP nanoprecursors to deliver biomimetic mineralization. J. Nanobiotechnol. 2021, 19, 385.

[28]

Sousa, R. B.; Dametto, A. C.; Sábio, R. M.; de Carvalho, R. A.; Vieira, E. G.; do Amaral Oliveira, A. F.; Ribeiro, L. K.; Barud, H. S.; Silva-Filho, E. C. Cerium-doped calcium phosphates precipitated on bacterial cellulose platform by mineralization. Ceram. Int. 2020, 46, 26985–26990.

[29]

Gebauer, D.; Gale, J. D.; Cölfen, H. Crystal nucleation and growth of inorganic ionic materials from aqueous solution: Selected recent developments, and implications. Small 2022, 18, 2107735.

[30]

Dorozhkin, S. V. Amorphous calcium (ortho)phosphates. Acta Biomater. 2010, 6, 4457–4475.

[31]

Ahn, S. J.; Shin, Y. M.; Kim, S. E.; Jeong, S. I.; Jeong, J. O.; Park, J. S.; Gwon, H. J.; Seo, D. E.; Nho, Y. C.; Kang, S. S. et al. Characterization of hydroxyapatite-coated bacterial cellulose scaffold for bone tissue engineering. Biotechnol. Bioprocess Eng. 2015, 20, 948–955.

[32]

Rodríguez, K.; Renneckar, S.; Gatenholm, P. Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS Appl. Mater. Interfaces 2011, 3, 681–689.

[33]

Petrauskaite, O.; de Sousa Gomes, P.; Fernandes, M. H.; Juodzbalys, G.; Stumbras, A.; Maminskas, J.; Liesiene, J.; Cicciù, M. Biomimetic mineralization on a macroporous cellulose-based matrix for bone regeneration. Biomed Res. Int. 2013, 2013, 452750.

[34]

Liu, H. H.; Lin, M. L.; Liu, X.; Zhang, Y.; Luo, Y. Y.; Pang, Y. Y.; Chen, H. T.; Zhu, D. W.; Zhong, X.; Ma, S. Q. et al. Doping bioactive elements into a collagen scaffold based on synchronous self-assembly/mineralization for bone tissue engineering. Bioact. Mater. 2020, 5, 844–858.

[35]

Shi, M. C.; Chen, Z. T.; Farnaghi, S.; Friis, T.; Mao, X. L.; Xiao, Y.; Wu, C. T. Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis. Acta Biomater. 2016, 30, 334–344.

[36]
Li, D.; Zhang, D. C.; Yuan, Q.; Liu, L. H.; Li, H.; Xiong, L.; Guo, X. N.; Yan, Y.; Yu, K.; Dai, Y. L. et al. In vitro and in vivo assessment of the effect of biodegradable magnesium alloys on osteogenesis. Acta Biomater. 2022, 141, 454–465.
[37]

Wu, C. T.; Chen, Z. T.; Yi, D. L.; Chang, J.; Xiao, Y. Multidirectional effects of Sr-, Mg-, and Si-containing bioceramic coatings with high bonding strength on inflammation, osteoclastogenesis, and osteogenesis. ACS Appl. Mater. Interfaces 2014, 6, 4264–4276.

[38]

Gao, P.; Fan, B.; Yu, X. M.; Liu, W. W.; Wu, J.; Shi, L.; Yang, D.; Tan, L. L.; Wan, P.; Hao, Y. L. et al. Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application. Bioact. Mater. 2020, 5, 680–693.

[39]

Jacobs, A.; Renaudin, G.; Forestier, C.; Nedelec, J. M.; Descamps, S. Biological properties of copper-doped biomaterials for orthopedic applications: A review of antibacterial, angiogenic and osteogenic aspects. Acta Biomater. 2020, 117, 21–39.

[40]

Bose, S.; Fielding, G.; Tarafder, S.; Bandyopadhyay, A. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol. 2013, 31, 594–605.

[41]

Gelli, R.; Ridi, F.; Baglioni, P. The importance of being amorphous: Calcium and magnesium phosphates in the human body. Adv. Colloid Interface Sci. 2019, 269, 219–235.

[42]

Tertuliano, O. A.; Greer, J. R. The nanocomposite nature of bone drives its strength and damage resistance. Nat. Mater. 2016, 15, 1195–1202.

[43]

Dorozhkin, S. V. Synthetic amorphous calcium phosphates (ACPs): Preparation, structure, properties, and biomedical applications. Biomater. Sci. 2021, 9, 7748–7798.

[44]

Tiomnova, O. T.; Coelho, F.; Pellizaro, T. A. G.; Enrique, J.; Chanfrau, R.; de Oliveira Capote, T. S.; Basmaji, P.; Pantoja, Y. V.; Guastaldi, A. C. Preparation of scaffolds of amorphous calcium phosphate and bacterial cellulose for use in tissue regeneration by freeze-drying process. Biointerface Res. Appl. Chem. 2021, 11, 7357–7367.

[45]

Perren, S. M. Evolution of the internal fixation of long bone fractures: The scientific basis of biological internal fixation: Choosing a new balance between stability and biology. J. Bone Joint Surg. Br. 2002, 84, 1093–1110.

[46]

Camarda, L.; Morello, S.; Balistreri, F.; D’Arienzo, A.; D’Arienzo, M. Non-metallic implant for patellar fracture fixation: A systematic review. Injury 2016, 47, 1613–1617.

[47]

Li, J. L.; Qin, L.; Yang, K.; Ma, Z. J.; Wang, Y. X.; Cheng, L. L.; Zhao, D. W. Materials evolution of bone plates for internal fixation of bone fractures: A review. J. Mater. Sci. Technol. 2020, 36, 190–208.

[48]

Nenna, A.; Nappi, F.; Dougal, J.; Satriano, U.; Chello, C.; Mastroianni, C.; Lusini, M.; Chello, M.; Spadaccio, C. Sternal wound closure in the current era: The need of a tailored approach. Gen. Thorac. Cardiovasc. Surg. 2019, 67, 907–916.

[49]

Merolli, A.; Rocchi, L.; de Spirito, M.; Federico, F.; Morini, A.; Mingarelli, L.; Fanfani, F. Debris of carbon-fibers originated from a CFRP (pEEK) wrist-plate triggered a destruent synovitis in human. J. Mater. Sci. :Mater. Med. 2016, 27, 50.

[50]

Ye, H. L.; Zhu, J. J.; Deng, D.; Jin, S. E.; Li, J. D.; Man, Y. Enhanced osteogenesis and angiogenesis by PCL/chitosan/Sr-doped calcium phosphate electrospun nanocomposite membrane for guided bone regeneration. J. Biomater. Sci. Polym. Ed. 2019, 30, 1505–1522.

[51]

Ma, F. B.; Zhang, Y. J.; Hu, L. Q.; Peng, Y.; Deng, Y. Q.; He, W. Q.; Ge, Y. M.; Tang, B. Strontium Laminarin polysaccharide modulates osteogenesis-angiogenesis for bone regeneration. Int. J. Biol. Macromol. 2021, 181, 452–461.

Nano Research
Pages 2154-2163
Cite this article:
Zhao Y, Liu X, Zhou Z, et al. Glycerol solutions of highly concentrated biomineral counter-ions towards water-responsive mineralization: Demonstration on bacterial cellulose and its application in hard tissue repair. Nano Research, 2024, 17(3): 2154-2163. https://doi.org/10.1007/s12274-023-5897-2
Topics:

722

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 March 2023
Revised: 31 May 2023
Accepted: 05 June 2023
Published: 26 July 2023
© Tsinghua University Press 2023
Return