AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Heteroatom doping regulates the catalytic performance of single-atom catalyst supported on graphene for ORR

Ji-Kai Sun1Yu-Wei Pan1Meng-Qian Xu1Lei Sun1Shaolong Zhang2( )Wei-Qiao Deng1Dong Zhai1( )
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
Show Author Information

Graphical Abstract

High oxygen reduction reaction (ORR) reactivity was achieved by regulating the electronic properties of Pt by changing the heteroatoms that coordinate with Pt.

Abstract

Replacing fossil fuels with fuel cells is a feasible way to reduce global energy shortages and environmental pollution. However, the oxygen reduction reaction (ORR) at the cathode has sluggish kinetics, which limits the development of fuel cells. It is significant to develop catalysts with high catalytic activity of ORR. The single-atom catalysts (SACs) of Pt supported on heteroatom-doped graphene are potential candidates for ORR. Here we studied the SACs of Pt with different heteroatoms doping and screened out Pt-C4 and Pt-C3O1 structures with only 0.13 V overpotential for ORR. Meanwhile, it is found that B atoms doping could weaken the adsorption capacity of Pt, while N or O atoms doping could enhance it. This regularity was verified on Fe SACs. Through the electronic interaction analysis between Pt and adsorbate, we explained the mechanism of this regularity and further proposed a new descriptor named corrected d-band center (εd-corr) to describe it. This descriptor is an appropriate reflection of the number of free electrons of the SACs, which could evaluate its adsorption capacity. Our work provides a purposeful regulatory strategy for the design of ORR catalysts.

Electronic Supplementary Material

Download File(s)
12274_2023_5898_MOESM1_ESM.pdf (3.1 MB)

References

[1]

Liu, Q. T.; Li, Y. C.; Zheng, L. R.; Shang, J. X.; Liu, X. F.; Yu, R. H.; Shui, J. L. Sequential synthesis and active-site coordination principle of precious metal single-atom catalysts for oxygen reduction reaction and PEM fuel cells. Adv. Energy Mater. 2020, 10, 2000689.

[2]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[3]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[4]

Lim, D. H.; Wilcox, J. Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. J. Phys. Chem. C 2012, 116, 3653–3660.

[5]

He, C. Y.; Zhang, J. J.; Shen, P. K. Nitrogen-self-doped graphene-based non-precious metal catalyst with superior performance to Pt/C catalyst toward oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 3231–3236.

[6]

Kan, D. X.; Lian, R. Q.; Wang, D. S.; Zhang, X. L.; Xu, J.; Gao, X. Y.; Yu, Y.; Chen, G.; Wei, Y. J. Screening effective single-atom ORR and OER electrocatalysts from Pt decorated MXenes by first-principles calculations. J. Mater. Chem. A 2020, 8, 17065–17077.

[7]

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

[8]

Kim, J.; Kim, H. E.; Lee, H. Single-atom catalysts of precious metals for electrochemical reactions. ChemSusChem 2018, 11, 104–113.

[9]

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

[10]

Ren, S.; Cao, X.; Jiang, Z. N.; Yu, Z. J.; Zhang, T. T.; Wei, S. H.; Fan, Q. K.; Yang, J.; Mao, J. J.; Wang, D. S. Single-atom catalysts for electrochemical applications. Chem. Commun. 2023, 59, 2560–2570.

[11]

Yang, G. G.; Zhu, J. W.; Yuan, P. F.; Hu, Y. F.; Qu, G.; Lu, B. A.; Xue, X. Y.; Yin, H. B.; Cheng, W. Z.; Cheng, J. Q. et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 2021, 12, 1734.

[12]

Li, Y. Y.; Zhu, X. R.; Li, L.; Li, F. Y.; Zhang, X. Y.; Li, Y. F.; Zheng, Z. P. Study on the structure–activity relationship between single-atom, cluster and nanoparticle catalysts in a hierarchical structure for the oxygen reduction reaction. Small 2022, 18, 2105487.

[13]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[14]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[15]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance. J. Am. Chem. Soc. 2014, 136, 4394–4403.

[16]

Wang, Z. X.; Zhao, J. X.; Cai, Q. H. CO2 electroreduction performance of a single transition metal atom supported on porphyrin-like graphene: A computational study. Phys. Chem. Chem. Phys. 2017, 19, 23113–23121.

[17]

Wu, L. Y.; Wang, Q.; Yang, C. H.; Quhe, R.; Guan, P. F.; Lu, P. F. Crown oxygen-doping graphene with embedded main-group metal atoms. Eur. Phys. J. B 2018, 91, 46.

[18]

Zhang, S. L.; Ao, X.; Huang, J.; Wei, B.; Zhai, Y. L.; Zhai, D.; Deng, W. Q.; Su, C. L.; Wang, D. S.; Li, Y. D. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021, 21, 9691–9698.

[19]

Sun, T. T.; Zhao, S.; Chen, W. X.; Zhai, D.; Dong, J. C.; Wang, Y.; Zhang, S. L.; Han, A. J.; Gu, L.; Yu, R. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl. Acad. Sci. USA 2018, 115, 12692–12697.

[20]

Chen, J. W.; Zhang, Z. S.; Yan, H. M.; Xia, G. J.; Cao, H.; Wang, Y. G. Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst. Nat. Commun. 2022, 13, 1734.

[21]

Chen, H.; Liang, X.; Liu, Y. P.; Ai, X.; Asefa, T.; Zou, X. X. Active site engineering in porous electrocatalysts. Adv. Mater. 2020, 32, 2002435.

[22]

Garlyyev, B.; Fichtner, J.; Piqué, O.; Schneider, O.; Bandarenka, A. S.; Calle-Vallejo, F. Revealing the nature of active sites in electrocatalysis. Chem. Sci. 2019, 10, 8060–8075.

[23]

Ortiz-Medina, J.; Wang, Z. P.; Cruz-Silva, R.; Morelos-Gomez, A.; Wang, F.; Yao, X. D.; Terrones, M.; Endo, M. Defect engineering and surface functionalization of nanocarbons for metal-free catalysis. Adv. Mater. 2019, 31, 1805717.

[24]

Zhuo, H. Y.; Zhang, X.; Liang, J. X.; Yu, Q.; Xiao, H.; Li, J. Theoretical understandings of graphene-based metal single-atom catalysts: Stability and catalytic performance. Chem. Rev. 2020, 120, 12315–12341.

[25]

Wu, X.; Zhang, H. B.; Zuo, S. W.; Dong, J. C.; Li, Y.; Zhang, J.; Han, Y. Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 2021, 13, 136.

[26]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[27]

Tang, C.; Chen, L.; Li, H. J.; Li, L. Q.; Jiao, Y.; Zheng, Y.; Xu, H. L.; Davey, K.; Qiao, S. Z. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827.

[28]

Ha, M. R.; Kim, D. Y.; Umer, M.; Gladkikh, V.; Myung, C. W.; Kim, K. S. Tuning metal single atoms embedded in NxCy moieties toward high-performance electrocatalysis. Energy Environ. Sci. 2021, 14, 3455–3468.

[29]

Li, L.; Huang, R.; Cao, X. R.; Wen, Y. H. Computational screening of efficient graphene-supported transition metal single atom catalysts toward the oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 19319–19327.

[30]

Ding, Y. N.; Zhou, W.; Gao, J. H.; Sun, F.; Zhao, G. B. H2O2 Electrogeneration from O2 electroreduction by N-doped carbon materials: A mini-review on preparation methods, selectivity of N sites, and prospects. Adv. Mater. Interfaces 2021, 8, 2002091.

[31]

Zhou, Y. N.; Gao, G. P.; Kang, J.; Chu, W.; Wang, L. W. Transition metal-embedded two-dimensional C3N as a highly active electrocatalyst for oxygen evolution and reduction reactions. J. Mater. Chem. A 2019, 7, 12050–12059.

[32]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[33]
Sun, J. P.; Liang, X. D. Density functional study of oxygen reduction reaction on oxygen doped graphene. In Proceedings of the International Conference on Logistics, Engineering, Management and Computer Science, Shenyang, China, 2015, pp 586–591.
[34]

Majidi, R.; Saadat, M.; Davoudi, S. Electronic properties of O-doped porous graphene and biphenylene carbon: A density functional theory study. Rom. Rep. Phys. 2017, 69, 509.

[35]

Wang, Y. L.; Shi, R.; Shang, L.; Waterhouse, G. I. N.; Zhao, J. Q.; Zhang, Q. H.; Gu, L.; Zhang, T. R. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew. Chem., Int. Ed. 2020, 59, 13057–13062.

[36]
Yang, Y.; Mao, K. T.; Gao, S. Q.; Huang, H.; Xia, G. L.; Lin, Z. Y.; Jiang, P.; Wang, C. L.; Wang, H.; Chen, Q. W. O-, N-atoms-coordinated Mn cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Adv. Mater. 2018, 30, 1801732.
[37]

Deng, C. F.; He, R. X.; Shen, W.; Li, M. Theoretical analysis of oxygen reduction reaction activity on single metal (Ni, Pd, Pt, Cu, Ag, Au) atom supported on defective two-dimensional boron nitride materials. Phys. Chem. Chem. Phys. 2019, 21, 18589–18594.

[38]

Zhou, Y. N.; Gao, G. P.; Chu, W.; Wang, L. W. Transition-metal single atoms embedded into defective BC3 as efficient electrocatalysts for oxygen evolution and reduction reactions. Nanoscale 2021, 13, 1331–1339.

[39]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[40]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[41]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[42]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[43]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[44]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[45]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[46]

Chen, X.; Ge, F.; Chen, T. T.; Lai, N. J. The effect of GGA functionals on the oxygen reduction reaction catalyzed by Pt(111) and FeN4 doped graphene. J. Mol. Model. 2019, 25, 180.

[47]

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

[48]

Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101.

[49]

Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

[50]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[51]

Yan, M.; Dai, Z. X.; Chen, S. N.; Dong, L. J.; Zhang, X. L.; Xu, Y. J.; Sun, C. H. Single-iron supported on defective graphene as efficient catalysts for oxygen reduction reaction. J. Phys. Chem. C 2020, 124, 13283–13290.

[52]

Lu, T.; Chen, F. W. Meaning and functional form of the electron localization function. Acta Phys. Chim. Sin. 2011, 27, 2786–2792.

[53]

Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 2011, 115, 5461–5466.

[54]

Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 9664–9672.

[55]

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

[56]

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

[57]

Ge, F.; Qiao, Q. G.; Chen, X.; Wu, Y. Probing the catalytic activity of M-N4−xOx embedded graphene for the oxygen reduction reaction by density functional theory. Front. Chem. Sci. Eng. 2021, 15, 1206–1216.

[58]

Wang, G. Z.; Li, Z. F.; Wu, W. K.; Guo, H.; Chen, C.; Yuan, H. K.; Yang, S. A. A two-dimensional h-BN/C2N heterostructure as a promising metal-free photocatalyst for overall water-splitting. Phys. Chem. Chem. Phys. 2020, 22, 24446–24454.

[59]

Zhang, P.; Xiao, B. B.; Hou, X. L.; Zhu, Y. F.; Jiang, Q. Layered SiC sheets: A potential catalyst for oxygen reduction reaction. Sci. Rep. 2014, 4, 3821.

[60]

Tripković, V.; Skúlason, E.; Siahrostami, S.; Nørskov, J. K.; Rossmeisl, J. The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations. Electrochim. Acta 2010, 55, 7975–7981.

[61]

Fu, Z. M.; Yang, B. W.; Wu, R. Q. Understanding the activity of single-atom catalysis from frontier orbitals. Phys. Rev. Lett. 2020, 125, 156001.

[62]

Yang, Y. W.; Li, K.; Meng, Y. N.; Wang, Y.; Wu, Z. J. A density functional study on the oxygen reduction reaction mechanism on FeN2-doped graphene. New J. Chem. 2018, 42, 6873–6879.

[63]

Zhao, T. T.; Tian, Y.; Wang, Y. L.; Yan, L. K.; Su, Z. M. Mechanistic insight into electroreduction of carbon dioxide on FeNx (x = 0–4) embedded graphene. Phys. Chem. Chem. Phys. 2019, 21, 23638–23644.

Nano Research
Pages 1086-1093
Cite this article:
Sun J-K, Pan Y-W, Xu M-Q, et al. Heteroatom doping regulates the catalytic performance of single-atom catalyst supported on graphene for ORR. Nano Research, 2024, 17(3): 1086-1093. https://doi.org/10.1007/s12274-023-5898-1
Topics:

730

Views

21

Crossref

24

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 29 March 2023
Revised: 22 May 2023
Accepted: 05 June 2023
Published: 24 July 2023
© Tsinghua University Press 2023
Return