AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Bioinspired nanofluidic iontronics for brain-like computing

Lejian Yu1,§Xipeng Li1,6,§Chunyi Luo1Zhenkang Lei2Yilan Wang1Yaqi Hou5( )Miao Wang4( )Xu Hou1,2,3,7,8 ( )
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Department of Biomaterials, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, China
The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
Binzhou Institute of Technology, Binzhou 256600, China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China

§ Lejian Yu and Xipeng Li contributed equally to this work.

Show Author Information

Graphical Abstract

Bioinspired nanofluidic iontronics is an emerging research field that draws inspiration from the information processing of human brain in central nervous system. In this review, we offer a comprehensive framework of background, theoretical basis, design, and prospects to promote the development of ion-based brain-like computing.

Abstract

The human brain performs computations via a highly interconnected network of neurons. Taking inspiration from the information delivery and processing mechanism of the human brain in central nervous systems, bioinspired nanofluidic iontronics has been proposed and gradually engineered to overcome the limitations of the conventional electron-based von Neumann architecture, which shows the promising potential to enable efficient brain-like computing. Anomalous and tunable nanofluidic ion transport behaviors and spatial confinement show promising controllability of charge carriers, and a wide range of structural and chemical modification paves new ways for realizing brain-like functions. Herein, a comprehensive framework of mechanisms and design strategy is summarized to enable the rational design of nanofluidic systems and facilitate the further development of bioinspired nanofluidic iontronics. This review provides recent advances and prospects of the bioinspired nanofluidic iontronics, including ion-based brain computing, comprehension of intrinsic mechanisms, design of artificial nanochannels, and the latest artificial neuromorphic functions devices. Furthermore, the challenges and opportunities of bioinspired nanofluidic iontronics in the pioneering and interdisciplinary research fields are proposed, including brain–computer interfaces and artificial neurons.

References

[1]

Raichle, M. E.; Gusnard, D. A. Appraising the brain’s energy budget. Proc. Natl. Acad. Sci. USA 2002, 99, 10237–10239.

[2]

Engl, E.; Attwell, D. Non-signalling energy use in the brain. J. Physiol. 2015, 593, 3417–3429.

[3]

Mehonic, A.; Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 2022, 604, 255–260.

[4]

Rajaraman, V. Frontier—World’s first ExaFLOPS supercomputer. Resonance 2023, 28, 567–576.

[5]

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T. et al. A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science 2018, 362, 1140–1144.

[6]

Schuman, C. D.; Kulkarni, S. R.; Parsa, M.; Mitchell, J. P.; Date, P.; Kay, B. Opportunities for neuromorphic computing algorithms and applications. Nat. Comput. Sci. 2022, 2, 10–19.

[7]

Grollier, J.; Querlioz, D.; Camsari, K. Y.; Everschor-Sitte, K.; Fukami, S.; Stiles, M. D. Neuromorphic spintronics. Nat. Electron. 2020, 3, 360–370.

[8]

Loeffler, A.; Diaz-Alvarez, A.; Zhu, R. M.; Ganesh, N.; Shine, J. M.; Nakayama, T.; Kuncic, Z. Neuromorphic learning, working memory, and metaplasticity in nanowire networks. Sci. Adv. 2023, 9, eadg3289.

[9]

Yuste, R. From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 2015, 16, 487–497.

[10]

Hao, X. C.; Ou, M. C.; Zhang, D. H.; Zhao, W. L.; Yang, Y. X.; Liu, J.; Yang, H.; Zhu, T.; Li, Y.; Zhou, C. The effects of general anesthetics on synaptic transmission. Curr. Neuropharmacol. 2020, 18, 936–965.

[11]

Park, D. K.; Stein, I. S.; Zito, K. Ion flux-independent NMDA receptor signaling. Neuropharmacology 2022, 210, 109019.

[12]

Voglis, G.; Tavernarakis, N. The role of synaptic ion channels in synaptic plasticity. EMBO Rep. 2006, 7, 1104–1110.

[13]

Reber, P. J. The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia 2013, 51, 2026–2042.

[14]

Zhang, J. R.; Liu, W. C.; Dai, J. Q.; Xiao, K. Nanoionics from biological to artificial systems: An alternative beyond nanoelectronics. Adv. Sci. 2022, 9, 2200534.

[15]

Yu, J. R.; Wang, Y. F.; Qin, S. S.; Gao, G. Y.; Xu, C.; Wang, Z. L.; Sun, Q. J. Bioinspired interactive neuromorphic devices. Mater. Today 2022, 60, 158–182.

[16]

Roy, K.; Jaiswal, A.; Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 2019, 575, 607–617.

[17]

Marković, D.; Mizrahi, A.; Querlioz, D.; Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2020, 2, 499–510.

[18]

Kumar, S.; Wang, X. X.; Strachan, J. P.; Yang, Y. C.; Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 2022, 7, 575–591.

[19]

Krogh, A. What are artificial neural networks. Nat. Biotechnol. 2008, 26, 195–197.

[20]

Feng, J. D.; Liu, K.; Graf, M.; Dumcenco, D.; Kis, A.; Di Ventra, M.; Radenovic, A. Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 2016, 15, 850–855.

[21]

Kavokine, N.; Marbach, S.; Siria, A.; Bocquet, L. Ionic Coulomb blockade as a fractional Wien effect. Nat. Nanotechnol. 2019, 14, 573–578.

[22]

Xue, Y. H.; Xia, Y.; Yang, S.; Alsaid, Y.; Fong, K. Y.; Wang, Y.; Zhang, X. Atomic-scale ion transistor with ultrahigh diffusivity. Science 2021, 372, 501–503.

[23]

Gopinadhan, K.; Hu, S.; Esfandiar, A.; Lozada-Hidalgo, M.; Wang, F. C.; Yang, Q.; Tyurnina, A. V.; Keerthi, A.; Radha, B.; Geim, A. K. Complete steric exclusion of ions and proton transport through confined monolayer water. Science 2019, 363, 145–148.

[24]

Wang, M.; Hou, Y. Q.; Yu, L. J.; Hou, X. Anomalies of ionic/molecular transport in nano and sub-nano confinement. Nano Lett. 2020, 20, 6937–6946.

[25]

Bocquet, L. Nanofluidics coming of age. Nat. Mater. 2020, 19, 254–256.

[26]

Kim, D.; Lee, J. S. Liquid-based memory devices for next-generation computing. ACS Appl. Electron. Mater. 2023, 5, 664–673.

[27]

Hou, Y. Q.; Ling, Y. X.; Wang, Y. Q.; Wang, M.; Chen, Y. Y.; Li, X. P.; Hou, X. Learning from the brain: Bioinspired nanofluidics. J. Phys. Chem. Lett. 2023, 14, 2891–2900.

[28]

Chun, H.; Chung, T. D. Iontronics. Annu. Rev. Anal. Chem. 2015, 8, 441–462.

[29]

Robin, P.; Kavokine, N.; Bocquet, L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 2021, 373, 687–691.

[30]

Hou, Y. Q.; Hou, X. Bioinspired nanofluidic iontronics. Science 2021, 373, 628–629.

[31]

Robin, P.; Emmerich, T.; Ismail, A.; Niguès, A.; You, Y.; Nam, G. H.; Keerthi, A.; Siria, A.; Geim, A. K.; Radha, B.; Bocquet, L. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 2023, 379, 161–167.

[32]

Zhang, X. Q.; Jiang, L. Quantum-confined ion superfluid in nerve signal transmission. Nano Res. 2019, 12, 1219–1221.

[33]

Kefauver, J. M.; Ward, A. B.; Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 2020, 587, 567–576.

[34]

Gazzaniga, M. S. Organization of the human brain. Science 1989, 245, 947–952.

[35]

Pessoa, L. Understanding brain networks and brain organization. Phys. Life Rev. 2014, 11, 400–435.

[36]

Toni, N.; Teng, E. M.; Bushong, E. A.; Aimone, J. B.; Zhao, C. M.; Consiglio, A.; van Praag, H.; Martone, M. E.; Ellisman, M. H.; Gage, F. H. Synapse formation on neurons born in the adult hippocampus. Nat. Neurosci. 2007, 10, 727–734.

[37]

Nicoll, R. A.; Schmitz, D. Synaptic plasticity at hippocampal mossy fibre synapses. Nat. Rev. Neurosci. 2005, 6, 863–876.

[38]

Duman, R. S.; Aghajanian, G. K. Synaptic dysfunction in depression: Potential therapeutic targets. Science 2012, 338, 68–72.

[39]

Paulsen, O.; Moser, E. A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends Neurosci. 1998, 21, 273–278.

[40]

Pereda, A. E. Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 2014, 15, 250–263.

[41]

Schumacher, M. A.; Rivard, A. F.; Bächinger, H. P.; Adelman, J. P. Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 2001, 410, 1120–1124.

[42]

Daw, N. W.; Stein, P. S. G.; Fox, K. The role of NMDA receptors in information processing. Annu. Rev. Neurosci. 1993, 16, 207–222.

[43]

Wu, L. G.; Borst, J. G. G.; Sakmann, B. R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proc. Natl. Acad. Sci. USA 1998, 95, 4720–4725.

[44]

Tyler, W. J. The mechanobiology of brain function. Nat. Rev. Neurosci. 2012, 13, 867–878.

[45]

LaPlaca, M. C.; Prado, G. R. Neural mechanobiology and neuronal vulnerability to traumatic loading. J. Biomech. 2010, 43, 71–78.

[46]

Hu, W.; An, C. Y.; Chen, W. J. Molecular mechanoneurobiology: An emerging angle to explore neural synaptic functions. BioMed Res. Int. 2015, 2015, 486827.

[47]

Etzion, Y.; Grossman, Y. Pressure-induced depression of synaptic transmission in the cerebellar parallel fibre synapse involves suppression of presynaptic N-type Ca2+ channels. Eur. J. Neurosci. 2000, 12, 4007–4016.

[48]

Maingret, F.; Fosset, M.; Lesage, F.; Lazdunski, M.; Honoré, E. TRAAK is a mammalian neuronal mechano-gated K+ channel. J. Biol. Chem. 1999, 274, 1381–1387.

[49]

Tabarean, I. V.; Morris, C. E. Membrane stretch accelerates activation and slow inactivation in Shaker channels with S3-S4 linker deletions. Biophys. J. 2002, 82, 2982–2994.

[50]

Zhu, J. D.; Zhang, T.; Yang, Y. C.; Huang, R. A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 2020, 7, 011312.

[51]

Abraham, W. C.; Jones, O. D.; Glanzman, D. L. Is plasticity of synapses the mechanism of long-term memory storage. npj Sci. Learn. 2019, 4, 9.

[52]

Adams, J. P.; Dudek, S. M. Late-phase long-term potentiation: Getting to the nucleus. Nat. Rev. Neurosci. 2005, 6, 737–743.

[53]

Grover, L. M.; Teyler, T. J. Two components of long-term potentiation induced by different patterns of afferent activation. Nature 1990, 347, 477–479.

[54]

Lynch, G.; Muller, D.; Seubert, P.; Larson, J. Long-term potentiation: Persisting problems and recent results. Brain Res. Bull. 1988, 21, 363–372.

[55]

Caporale, N.; Dan, Y. Spike timing-dependent plasticity: A Hebbian learning rule. Annu. Rev. Neurosci. 2008, 31, 25–46.

[56]

Blackmore, D. G.; Turpin, F.; Palliyaguru, T.; Evans, H. T.; Chicoteau, A.; Lee, W.; Pelekanos, M.; Nguyen, N.; Song, J.; Sullivan, R. K. P. et al. Low-intensity ultrasound restores long-term potentiation and memory in senescent mice through pleiotropic mechanisms including NMDAR signaling. Mol. Psychiatry 2021, 26, 6975–6991.

[57]

Peng, L. M.; Zhang, Z. Y.; Qiu, C. G. Carbon nanotube digital electronics. Nat. Electron. 2019, 2, 499–505.

[58]

Sheng, Q.; Xie, Y. B.; Li, J.; Wang, X. W.; Xue, J. M. Transporting an ionic-liquid/water mixture in a conical nanochannel: A nanofluidic memristor. Chem. Commun. 2017, 53, 6125–6127.

[59]

Xiong, T. Y.; Li, C. W.; He, X. L.; Xie, B. Y.; Zong, J. W.; Jiang, Y. N.; Ma, W. J.; Wu, F.; Fei, J. J.; Yu, P. et al. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 2023, 379, 156–161.

[60]

Zhang, P.; Xia, M.; Zhuge, F. W.; Zhou, Y.; Wang, Z. Y.; Dong, B. Y.; Fu, Y. Y.; Yang, K. C.; Li, Y.; He, Y. H. et al. Nanochannel-based transport in an interfacial memristor can emulate the analog weight modulation of synapses. Nano Lett. 2019, 19, 4279–4286.

[61]

Najem, J. S.; Taylor, G. J.; Weiss, R. J.; Hasan, M. S.; Rose, G.; Schuman, C. D.; Belianinov, A.; Collier, C. P.; Sarles, S. A. Memristive ion channel-doped biomembranes as synaptic mimics. ACS Nano 2018, 12, 4702–4711.

[62]

Guerrette, J. P.; Zhang, B. Scan-rate-dependent current rectification of cone-shaped silica nanopores in quartz nanopipettes. J. Am. Chem. Soc. 2010, 132, 17088–17091.

[63]

Conroy, D. T.; Craster, R. V.; Matar, O. K.; Cheng, L. J.; Chang, H. C. Nonequilibrium hysteresis and Wien effect water dissociation at a bipolar membrane. Phys. Rev. E 2012, 86, 056104.

[64]

Wang, D. C.; Kvetny, M.; Liu, J.; Brown, W.; Li, Y.; Wang, G. L. Transmembrane potential across single conical nanopores and resulting memristive and memcapacitive ion transport. J. Am. Chem. Soc. 2012, 134, 3651–3654.

[65]

Noy, A.; Darling, S. B. Nanofluidic computing makes a splash. Science 2023, 379, 143–144.

[66]

Gerasimov, J. Y.; Gabrielsson, R.; Forchheimer, R.; Stavrinidou, E.; Simon, D. T.; Berggren, M.; Fabiano, S. An evolvable organic electrochemical transistor for neuromorphic applications. Adv. Sci. 2019, 6, 1801339.

[67]

Bu, Y.; Ahmed, Z.; Yobas, L. A nanofluidic memristor based on ion concentration polarization. Analyst 2019, 144, 7168–7172.

[68]

Leong, I. W.; Tsutsui, M.; Murayama, S.; Hayashida, T.; He, Y. H.; Taniguchi, M. Quasi-stable salt gradient and resistive switching in solid-state nanopores. ACS Appl. Mater. Interfaces 2020, 12, 52175–52181.

[69]

Chougale, M. Y.; Patil, S. R.; Shinde, S. P.; Khot, S. S.; Patil, A. A.; Khot, A. C.; Chougule, S. S.; Volos, C. K.; Kim, S.; Dongale, T. D. Memristive switching in ionic liquid-based two-terminal discrete devices. Ionics 2019, 25, 5575–5583.

[70]

Sun, G. C.; Slouka, Z.; Chang, H. C. Fluidic-based ion memristors and ionic latches. Small 2015, 11, 5206–5213.

[71]

Wen, L. P.; Zhang, X. Q.; Tian, Y.; Jiang, L. Quantum-confined superfluid: From nature to artificial. Sci. China Mater. 2018, 61, 1027–1032.

[72]

Hao, Y. W.; Zhang, X. Q.; Jiang, L. Quantum-confined superfluid. Nanoscale Horiz. 2019, 4, 1029–1036.

[73]

Shen, J.; Liu, G. P.; Han, Y.; Jin, W. Q. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 2021, 6, 294–312.

[74]

Najem, J. S.; Hasan, M. S.; Williams, R. S.; Weiss, R. J.; Rose, G. S.; Taylor, G. J.; Sarles, S. A.; Collier, C. P. Dynamical nonlinear memory capacitance in biomimetic membranes. Nat. Commun. 2019, 10, 3239.

[75]

Chen, K. X.; Tsutsui, M.; Zhuge, F. W.; Zhou, Y.; Fu, Y. Y.; He, Y. H.; Miao, X. S. Nanochannel-based interfacial memristor: Electrokinetic analysis of the frequency characteristics. Adv. Electron. Mater. 2021, 7, 2000848.

[76]

Bushmaker, A. W.; Chang, C. C.; Deshpande, V. V.; Amer, M. R.; Bockrath, M. W.; Cronin, S. B. Memristive behavior observed in a defected single-walled carbon nanotube. IEEE Trans. Nanotechnol. 2011, 10, 582–586.

[77]

Liu, R. C.; Kim, J. G.; Dhakal, P.; Li, W.; Ma, J.; Hou, A. L.; Merkel, C.; Qiu, J. J.; Zoran, M.; Wang, S. R. Neuromorphic properties of flexible carbon nanotube/polydimethylsiloxane nanocomposites. Adv. Compos. Hybrid Mater. 2023, 6, 14.

[78]

Peng, R.; Pan, Y. Y.; Liu, B. W.; Li, Z.; Pan, P.; Zhang, S. L.; Qin, Z.; Wheeler, A. R.; Tang, X. W.; Liu, X. Y. Understanding carbon nanotube-based ionic diodes: Design and mechanism. Small 2021, 17, 2100383.

[79]

Peng, R.; Pan, Y. Y.; Li, Z.; Zhang, S. L.; Wheeler, A. R.; Tang, X. W.; Liu, X. Y. Ionotronics based on horizontally aligned carbon nanotubes. Adv. Funct. Mater. 2020, 30, 2003177.

[80]

Wang, M.; Meng, H. Q.; Wang, D.; Yin, Y. J.; Stroeve, P.; Zhang, Y. M.; Sheng, Z. Z.; Chen, B. Y.; Zhan, K.; Hou, X. Dynamic curvature nanochannel-based membrane with anomalous ionic transport behaviors and reversible rectification switch. Adv. Mater. 2019, 31, 1805130.

[81]

Lu, B. X.; Xiao, T. L.; Zhang, C. L.; Jiang, J. Q.; Wang, Y. T.; Diao, X. G.; Zhai, J. Brain wave-like signal modulator by ionic nanochannel rectifier bridges. Small 2022, 18, 2203104.

[82]

Zhu, J. D.; Yang, Y. C.; Jia, R. D.; Liang, Z. X.; Zhu, W.; Rehman, Z. U.; Bao, L.; Zhang, X. X.; Cai, Y. M.; Song, L. et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 2018, 30, 1800195.

[83]

Zhao, S. F.; Ran, W. H.; Lou, Z.; Li, L. L.; Poddar, S.; Wang, L. L.; Fan, Z. Y.; Shen, G. Z. Neuromorphic-computing-based adaptive learning using ion dynamics in flexible energy storage devices. Natl. Sci. Rev. 2022, 9, nwac158.

[84]

Wei, D.; Yang, F. Y.; Jiang, Z. H.; Wang, Z. L. Flexible iontronics based on 2D nanofluidic material. Nat. Commun. 2022, 13, 4965.

[85]

Lei, Z. Y.; Wu, P. Y. Short-term plasticity, multimodal memory, and logical responses mimicked in stretchable hydrogels. Matter 2023, 6, 429–444.

[86]

Qian, T. Y.; Zhang, H. C.; Li, X. Y.; Hou, J.; Zhao, C.; Gu, Q. F.; Wang, H. T. Efficient gating of ion transport in three-dimensional metal-organic framework sub-nanochannels with confined light-responsive azobenzene molecules. Angew. Chem., Int. Ed. 2020, 59, 13051–13056.

[87]

Yu, X. Q.; Li, C. Y.; Chang, J. H.; Wang, Y. J.; Xia, W. F.; Suo, J. Q.; Guan, X. Y.; Valtchev, V.; Yan, Y. S.; Qiu, S. L. et al. Gating effects for ion transport in three-dimensional functionalized covalent organic frameworks. Angew. Chem., Int. Ed. 2022, 61, e202200820.

[88]

Zhang, Z.; He, L.; Zhu, C. C.; Qian, Y. C.; Wen, L. P.; Jiang, L. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat. Commun. 2020, 11, 875.

[89]

van de Burgt, Y.; Melianas, A.; Keene, S. T.; Malliaras, G.; Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 2018, 1, 386–397.

[90]

Zhang, Y.; Wang, Z. R.; Zhu, J. D.; Yang, Y. C.; Rao, M. Y.; Song, W. H.; Zhuo, Y.; Zhang, X. M.; Cui, M. L.; Shen, L. L. et al. Brain-inspired computing with memristors: Challenges in devices, circuits, and systems. Appl. Phys. Rev. 2020, 7, 011308.

[91]

Harikesh, P. C.; Yang, C. Y.; Wu, H. Y.; Zhang, S. L.; Donahue, M. J.; Caravaca, A. S.; Huang, J. D.; Olofsson, P. S.; Berggren, M.; Tu, D. et al. Ion-tunable antiambipolarity in mixed ion-electron conducting polymers enables biorealistic organic electrochemical neurons. Nat. Mater. 2023, 22, 242–248.

[92]

Sarkar, T.; Lieberth, K.; Pavlou, A.; Frank, T.; Mailaender, V.; McCulloch, I.; Blom, P. W. M.; Torricelli, F.; Gkoupidenis, P. An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 2022, 5, 774–783.

[93]

Wang, T.; Wang, M.; Wang, J. W.; Yang, L.; Ren, X. Y.; Song, G.; Chen, S. S.; Yuan, Y. H.; Liu, R. Q.; Pan, L. et al. A chemically mediated artificial neuron. Nat. Electron. 2022, 5, 586–595.

[94]

Tang, X.; Shen, H.; Zhao, S. Y.; Li, N.; Liu, J. Flexible brain–computer interfaces. Nat. Electron. 2023, 6, 109–118.

[95]

Sui, Y. N.; Yu, H. L.; Zhang, C.; Chen, Y.; Jiang, C. Q.; Li, L. M. Deep brain–machine interfaces: Sensing and modulating the human deep brain. Natl. Sci. Rev. 2022, 9, nwac212.

[96]

Won, S. M.; Song, E. M.; Reeder, J. T.; Rogers, J. A. Emerging modalities and implantable technologies for neuromodulation. Cell 2020, 181, 115–135.

Nano Research
Pages 503-514
Cite this article:
Yu L, Li X, Luo C, et al. Bioinspired nanofluidic iontronics for brain-like computing. Nano Research, 2024, 17(2): 503-514. https://doi.org/10.1007/s12274-023-5900-y
Topics:
Part of a topical collection:

1847

Views

305

Downloads

23

Crossref

22

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 11 May 2023
Revised: 05 June 2023
Accepted: 06 June 2023
Published: 14 July 2023
© Tsinghua University Press 2023
Return