AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Anomalous refinement and uniformization of grains in metallic thin films

Lei Wang1,2,§Shu Wang1,§Xiaofeng Wang1,§Jianming Zhang3Jianjie Dong1Bin Wei4Haiguang Yang1Zhongchang Wang5( )Ziyang Zhang6( )ChuanFei Guo3( )Qian Liu1,7( )
Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing 100190, China
College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
School of Materials, Sun Yat-Sen University, Guangzhou 510275, China
International Iberian Nanotechnology Laboratory (INL), Department of Quantum and Energy Materials, Braga 4715-330, Portugal
School of Electronic and Information Engineering, Qingdao University, Qingdao 266071, China
The MOE Key Laboratory of Weak-Light Nonlinear Photonics and TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China

§ Lei Wang, Shu Wang, and Xiaofeng Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Anomalous refinement of grains in thin metal films is realized by using laser direct writing with a nanoscale spot size that causes localized heating and adaptive shock-cooling to suppress ripening.

Abstract

When a laser beam writes on a metallic film, it usually coarsens and deuniformizes grains because of Ostwald ripening, similar to the case of annealing. Here we show an anomalous refinement effect of metal grains: A metallic silver film with large grains melts and breaks into uniform, close-packed, and ultrafine (~ 10 nm) grains by laser direct writing with a nanoscale laser spot size and nanosecond pulse that causes localized heating and adaptive shock-cooling. This method exhibits high controllability in both grain size and uniformity, which lies in a linear relationship between the film thickness (h) and grain size (D), D h. The linear relationship is significantly different from the classical spinodal dewetting theory obeying a nonlinear relationship (D h5/3) in common laser heating. We also demonstrate the application of such a silver film with a grain size of ~ 10.9 nm as a surface-enhanced Raman scattering chip, exhibiting superhigh spatial-uniformity and low detection limit down to 10−15 M. This anomalous refinement effect is general and can be extended to many other metallic films.

Electronic Supplementary Material

Download File(s)
12274_2023_5902_MOESM1_ESM.pdf (2.2 MB)

References

[1]

González-Rubio, G.; Díaz-Núñez, P.; Rivera, A.; Prada, A.; Tardajos, G.; González-Izquierdo, J.; Bañares, L.; Llombart, P.; Macdowell, L. G.; Palafox, M. A. et al. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science 2017, 358, 640–644.

[2]

Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021.

[3]

Guo, C. F.; Zhang, J. M.; Miao, J. J.; Fan, Y. T.; Liu, Q. MTMO grayscale photomask. Opt. Express 2010, 18, 2621–2631.

[4]

Yan, Y.; Warren, S. C.; Fuller, P.; Grzybowski, B. A. Chemoelectronic circuits based on metal nanoparticles. Nat. Nanotech. 2016, 11, 603–608.

[5]

Kang, M. G.; Kim, M. S.; Kim, J.; Guo, L. J. Organic solar cells using nanoimprinted transparent metal electrodes. Adv. Mater. 2008, 20, 4408–4413.

[6]

Guo, C. F.; Sun, T. Y.; Cao, F.; Liu, Q.; Ren, Z. F. Metallic nanostructures for light trapping in energy-harvesting devices. Light Sci. Appl. 2014, 3, e161.

[7]

Yang, J. K. W.; Chen, Y. J.; Huang, T. L.; Duan, H. G.; Thiyagarajah, N.; Hui, H. K.; Leong, S. H.; Ng, V. Fabrication and characterization of bit-patterned media beyond 1.5 Tbit/in2. Nanotechnology 2011, 22, 385301.

[8]

Puebla-Hellmann, G.; Venkatesan, K.; Mayor, M.; Lörtscher, E. Metallic nanoparticle contacts for high-yield, ambient-stable molecular-monolayer devices. Nature 2018, 559, 232–235.

[9]

Wong, A.; Liu, Q.; Griffin, S.; Nicholls, A.; Regalbuto, J. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports. Science 2017, 358, 1427–1430.

[10]

Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913–3961.

[11]

Zong, C.; Xu, M. X.; Xu, L. J.; Wei, T.; Ma, X.; Zheng, X. S.; Hu, R.; Ren, B. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges. Chem. Rev. 2018, 118, 4946–4980.

[12]

Liang, Y. J.; Xie, Y.; Chen, D. X.; Guo, C. F.; Hou, S.; Wen, T.; Yang, F. Y.; Deng, K.; Wu, X. C.; Smalyukh, I. I. et al. Symmetry control of nanorod superlattice driven by a governing force. Nat. Commun. 2017, 8, 1410.

[13]

Martyn, I.; Kanno, T. Y.; Ruzo, A.; Siggia, E. D.; Brivanlou, A. H. Self-organization of a human organizer by combined Wnt and Nodal signalling. Nature 2018, 558, 132–135.

[14]

Boschetti, L.; Flasse, S. P.; Brivio, P. A. Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: The Pareto boundary. Remote Sens. Environ. 2004, 91, 280–292.

[15]

Kang, H.; Jung, S.; Jeong, S.; Kim, G.; Lee, K. Polymer-metal hybrid transparent electrodes for flexible electronics. Nat. Commun. 2015, 6, 6503.

[16]

Guo, L. J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 2007, 19, 495–513.

[17]

Kang, M. G.; Guo, L. J. Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Adv. Mater. 2007, 19, 1391–1396.

[18]

Zhang, S. M.; Zhang, L.; Liu, K.; Liu, M. X.; Yin, Y. D.; Gao, C. B. Digestive ripening in the formation of monodisperse silver nanospheres. Mater. Chem. Front. 2018, 2, 1328–1333.

[19]

Chen, Y.; Palmer, R. E.; Wilcoxon, J. P. Sintering of passivated gold nanoparticles under the electron beam. Langmuir 2006, 22, 2851–2855.

[20]

Trice, J.; Favazza, C.; Thomas, D.; Garcia, H.; Kalyanaraman, R.; Sureshkumar, R. Novel self-organization mechanism in ultrathin liquid films: Theory and experiment. Phys. Rev. Lett. 2008, 101, 017802.

[21]

Trice, J.; Thomas, D.; Favazza, C.; Sureshkumar, R.; Kalyanaraman, R. Pulsed-laser-induced dewetting in nanoscopic metal films: Theory and experiments. Phys. Rev. B 2007, 75, 235439.

[22]

Yadavali, S.; Khenner, M.; Kalyanaraman, R. Pulsed laser de wetting of Au films: Experiments and modeling of nanoscale behavior. J. Mater. Res. 2013, 28, 1715–1723.

[23]

Vrij, A. Possible mechanism for the spontaneous rupture of thin, free liquid films. Discuss. Faraday Soc. 1966, 42, 23–33.

[24]

Zhang, H. R.; Yang, F. Y.; Dong, J. J.; Du, L. N.; Wang, C.; Zhang, J. M.; Guo, C. F.; Liu, Q. Kaleidoscopic imaging patterns of complex structures fabricated by laser-induced deformation. Nat. Commun. 2016, 7, 13743.

[25]

Zhao, G. Q.; Shen, W. F.; Jeong, E.; Lee, S. G.; Yu, S. M.; Bae, T. S.; Lee, G. H.; Han, S. Z.; Tang, J. G.; Choi, E. A. et al. Ultrathin silver film electrodes with ultralow optical and electrical losses for flexible organic photovoltaics. ACS Appl. Mater. Interfaces 2018, 10, 27510–27520.

[26]

Krishna, H.; Shirato, N.; Favazza, C.; Kalyanaraman, R. Pulsed laser induced self-organization by dewetting of metallic films. J. Mater. Res. 2011, 26, 154–169.

[27]

Woehl, T. J.; Park, C.; Evans, J. E.; Arslan, I.; Ristenpart, W. D.; Browning, N. D. Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate. Nano Lett. 2014, 14, 373–378.

[28]

Zhou, X.; Li, X.; Lu, K. Enhanced thermal stability of nanograined metals below a critical grain size. Science 2018, 360, 526–530.

[29]

Fang, Y.; Seong, N. H.; Dlott, D. D. Measurement of the distribution of site enhancements in surface-enhanced raman scattering. Science 2008, 321, 388–392.

[30]

Zheng, Y. H.; Soeriyadi, A. H.; Rosa, L.; Ng, S. H.; Bach, U.; Gooding, J. J. Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection. Nat. Commun. 2015, 6, 8797.

[31]

Jeong, J. W.; Arnob, M. P.; Baek, K. M.; Lee, S. Y.; Shih, W. C.; Jung, Y. S. 3D cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced raman spectroscopy analysis. Adv. Mater. 2016, 28, 8695–8704.

[32]

Lim, D. K. Jeon, K. S.; Hwang, J. H.; Kim, H.; Kwon, S.; Suh, Y. D.; Nam, J. M. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotech. 2011, 6, 452–460.

[33]

Tan, S. F.; Wu, L.; Yang, J. K. W.; Bai, P.; Bosman, M.; Nijhuis, C. A. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 2014, 343, 1496–1499.

[34]

Wang, C. Y.; Chen, H. Y.; Sun, L. Y.; Chen, W. L.; Chang, Y. M.; Ahn, H.; Li, X. Q.; Gwo, S. Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics. Nat. Commun. 2015, 6, 7734.

[35]

Guo, C. F.; Nayyar, V.; Zhang, Z. W.; Chen, Y.; Miao, J. J.; Huang, R.; Liu, Q. Path-guided wrinkling of nanoscale metal films. Adv. Mater. 2012, 24, 3010–3014.

[36]

Xia, F.; Zhang, X. Z.; Wang, M.; Liu, Q.; Xu, J. J. Analysis of the laser oxidation kinetics process of In-In2O3 MTMO photomasks by laser direct writing. Opt. Express 2015, 23, 29193.

Nano Research
Pages 13358-13365
Cite this article:
Wang L, Wang S, Wang X, et al. Anomalous refinement and uniformization of grains in metallic thin films. Nano Research, 2023, 16(12): 13358-13365. https://doi.org/10.1007/s12274-023-5902-9
Topics:
Part of a topical collection:

774

Views

55

Downloads

0

Crossref

2

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 16 March 2023
Revised: 15 May 2023
Accepted: 06 June 2023
Published: 25 July 2023
© The Author(s) 2023

Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return