AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Carbon flowers as electrocatalysts for the reduction of oxygen to hydrogen peroxide

Huaxin Gong1,2,§Lingze Wei1,2,§Shucheng Chen1,2,§Zhihua Chen1,2,§Thomas F. Jaramillo1,2( )Zhenan Bao1,2( )
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

§ Huaxin Gong, Lingze Wei, Shucheng Chen, and Zhihua Chen contributed equally to this work.

Show Author Information

Graphical Abstract

This paper presents a novel type of metal-free N-doped carbon catalysts for electrochemical H2O2 production based on carbon particles with flower-like nanostructures. Due to the unique morphology and abundant active sites, the catalysts showed promising 2e oxygen reduction reaction (ORR) catalytic performance.

Abstract

Small-scale and decentralized production of H2O2 via electrochemical reduction of oxygen is of great benefit, especially for sanitization, air and water purification, as well as for a variety of chemical processes. The development of low-cost and high-performance catalysts for this reaction remains a key challenge. Carbon-based materials have drawn substantial research efforts in recent years due to their advantageous properties, such as high chemical stability and high tunability in active sites and morphology. Deeper understanding of structure–activity relationships can guide the design of improved catalysts. We hypothesize that mass transport to active sites is of great importance, and herein we use carbon materials with unique flower-like superstructures to achieve high activity and selectivity for O2 reduction to H2O2. The abundance of nitrogen active sites controlled by pyrolysis temperature resulted in high catalytic activity and selectivity for oxygen reduction reaction (ORR). The flower superstructure showed higher performance than the spherical nanoparticles due to greater accessibility to the active sites. Chemical activation improves the catalysts’ performances further, driving the production of H2O2 to a record-setting rate of 816 mmol·gcat−1·h−1 using a bulk electrolysis setup. This work demonstrates the development of a highly active catalyst for the sustainable production of H2O2 through rational design and synthetic control. The understanding from this work provides further insight into the design of future carbon-based electrocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2023_5903_MOESM1_ESM.pdf (1.6 MB)

References

[1]

Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.

[2]

Martínez-Huitle, C. A.; Ferro, S. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chem. Soc. Rev. 2006, 35, 1324–1340.

[3]

Ciriminna, R.; Albanese, L.; Meneguzzo, F.; Pagliaro, M. Hydrogen peroxide: A Key chemical for today’s sustainable development. ChemSusChem 2016, 9, 3374–3381.

[4]

Chen, Z. H.; Chen, S. C.; Siahrostami, S.; Chakthranont, P.; Hahn, C.; Nordlund, D.; Dimosthenis, S.; Nørskov, J. K.; Bao, Z. N.; Jaramillo, T. F. Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2. React. Chem. Eng. 2017, 2, 239–245.

[5]

Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137–1143.

[6]

Verdaguer-Casadevall, A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T. W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Trends in the electrochemical synthesis of H2O2: Enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 2014, 14, 1603–1608.

[7]

Yamanaka, I.; Murayama, T. Neutral H2O2 synthesis by electrolysis of water and O2. Angew. Chem. 2008, 120, 1926–1928.

[8]

Melchionna, M.; Fornasiero, P.; Prato, M. The rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions. Adv. Mater. 2019, 31, 1802920.

[9]

Jiang, Y. Y.; Ni, P. J.; Chen, C. X.; Lu, Y. Z.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 2018, 8, 1801909.

[10]

Iglesias, D.; Giuliani, A.; Melchionna, M.; Marchesan, S.; Criado, A.; Nasi, L.; Bevilacqua, M.; Tavagnacco, C.; Vizza, F.; Prato, M. et al. N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 2018, 4, 106–123.

[11]

Sun, Y. Y.; Sinev, I.; Ju, W.; Bergmann, A.; Dresp, S.; Kühl, S.; Spöri, C.; Schmies, H.; Wang, H.; Bernsmeier, D. et al. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal. 2018, 8, 2844–2856.

[12]

Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y. Z.; Yan, X. Z.; Nilsson, E. et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2018, 140, 7851–7859.

[13]

Liu, Y. M.; Quan, X.; Fan, X. F.; Wang, H.; Chen, S. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem., Int. Ed. 2015, 54, 6837–6841.

[14]

Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J. H.; Yang, P. D.; Mccloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282–290.

[15]

Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

[16]

Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem., Int. Ed. 2016, 55, 2058–2062.

[17]

Zheng, Z. K.; Ng, Y. H.; Wang, D. W.; Amal, R. Epitaxial growth of Au-Pt-Ni nanorods for direct high selectivity H2O2 production. Adv. Mater. 2016, 28, 9949–9955.

[18]

Jirkovský, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 2011, 133, 19432–19441.

[19]

Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Kim, T. R.; Nordlund, D.; Sokaras, D.; Nowak, S.; To, J. W. F.; Higgins, D.; Sinclair, R. et al. Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide. ACS Sustainable Chem. Eng. 2017, 6, 311–317.

[20]

Fellinger, T. P.; Hasché, F.; Strasser, P.; Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2012, 134, 4072–4075.

[21]

Li, P. P.; Jin, Z. Y.; Qian, Y. M.; Fang, Z. W.; Xiao, D.; Yu, G. H. Supramolecular confinement of single Cu atoms in hydrogel frameworks for oxygen reduction electrocatalysis with high atom utilization. Mater. Today 2020, 35, 78–86.

[22]

Fang, Z. W.; Li, P. P.; Yu, G. H. Gel electrocatalysts: An emerging material platform for electrochemical energy conversion. Adv. Mater. 2020, 32, 2003191.

[23]

Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.

[24]

Chen, S. C.; Koshy, D. M.; Tsao, Y.; Pfattner, R.; Yan, X. Z.; Feng, D. W.; Bao, Z. N. Highly tunable and facile synthesis of uniform carbon flower particles. J. Am. Chem. Soc. 2018, 140, 10297–10304.

[25]

Gong, H. X.; Chen, S. C.; Ning, R.; Chang, T. H.; Tok, J. B. H.; Bao, Z. N. Densely packed and highly ordered carbon flower particles for high volumetric performance. Small Sci. 2021, 1, 2000067.

[26]

Chen, S. C.; Gong, H. X.; Dindoruk, B.; He, J. J.; Bao, Z. N. Dense carbon nanoflower pellets for methane storage. ACS Appl. Nano Mater. 2020, 3, 8278–8285.

[27]

Gong, H. X.; Ilavsky, J.; Kuzmenko, I.; Chen, S. C.; Yan, H. P.; Cooper, C. B.; Chen, G.; Chen, Y. L.; Chiong, J. A.; Jiang, Y. W. et al. Formation mechanism of flower-like polyacrylonitrile particles. J. Am. Chem. Soc. 2022, 144, 17576–17587.

[28]

Wei, W.; Liang, H. W.; Parvez, K.; Zhuang, X. D.; Feng, X. L.; Müllen, K. Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angew. Chem. 2014, 126, 1596–1600.

[29]

Ding, W.; Wei, Z. D.; Chen, S. G.; Qi, X. Q.; Yang, T.; Hu, J. S.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Angew. Chem., Int. Ed. 2013, 52, 11755–11759.

[30]

Rhim, Y. R.; Zhang, D. J.; Fairbrother, D. H.; Wepasnick, K. A.; Livi, K. J.; Bodnar, R. J.; Nagle, D. C. Changes in electrical and microstructural properties of microcrystalline cellulose as function of carbonization temperature. Carbon 2010, 48, 1012–1024.

[31]

Sidik, R. A.; Anderson, A. B.; Subramanian, N. P.; Kumaraguru, S. P.; Popov, B. N. O2 reduction on graphite and nitrogen-doped graphite: Experiment and theory. J. Phys. Chem. B 2006, 110, 1787–1793.

[32]

Wu, J. J.; Ma, L. L.; Yadav, R. M.; Yang, Y. C.; Zhang, X.; Vajtai, R.; Lou, J.; Ajayan, P. M. Nitrogen-doped graphene with pyridinic dominance as a highly active and stable electrocatalyst for oxygen reduction. ACS Appl. Mater. Interfaces 2015, 7, 14763–14769.

[33]

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

[34]

Hu, C.; Sedghi, S.; Silvestre-Albero, A.; Andersson, G. G.; Sharma, A.; Pendleton, P.; Rodríguez-Reinoso, F.; Kaneko, K.; Biggs, M. J. Raman spectroscopy study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the thermal annealing pathway. Carbon 2015, 85, 147–158.

[35]

Wang, Q.; Yan, J.; Wang, Y. B.; Wei, T.; Zhang, M. L.; Jing, X. Y.; Fan, Z. J. Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 2014, 67, 119–127.

[36]

Xu, Z. X.; Zhuang, X. D.; Yang, C. Q.; Cao, J.; Yao, Z. Q.; Tang, Y. P.; Jiang, J. Z.; Wu, D. Q.; Feng, X. L. Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv. Mater. 2016, 28, 1981–1987.

[37]

Zhou, L.; Huang, T.; Yu, A. S. Three-dimensional flower-shaped activated porous carbon/sulfur composites as cathode materials for lithium-sulfur batteries. ACS Sustainable Chem. Eng. 2014, 2, 2442–2447.

[38]

Tsao, Y.; Gong, H. X.; Chen, S. C.; Chen, G.; Liu, Y. Z.; Gao, T. Z.; Cui, Y.; Bao, Z. N. A nickel-decorated carbon flower/sulfur cathode for lean-electrolyte lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2101449.

[39]

Gong, H. X.; Chen, Y. L.; Chen, S. C.; Xu, C. Y.; Yang, Y. F.; Ye, Y. S.; Huang, Z. J.; Ning, R.; Cui, Y.; Bao, Z. N. Fast-charging of hybrid lithium-ion/lithium-metal anodes by nanostructured hard carbon host. ACS Energy Lett. 2022, 7, 4417–4426.

[40]

Zhou, Y.; Chen, G.; Zhang, J. J. A review of advanced metal-free carbon catalysts for oxygen reduction reactions towards the selective generation of hydrogen peroxide. J. Mater. Chem. A 2020, 8, 20849–20869.

[41]

Wang, J. C.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725.

[42]

Wabo, S. G.; Klepel, O. Nitrogen release and pore formation through KOH activation of nitrogen-doped carbon materials: An evaluation of the literature. Carbon Lett. 2021, 31, 581–592.

[43]

Lee, Y. H.; Li, F.; Chang, K. H.; Hu, C. C.; Ohsaka, T. Novel synthesis of N-doped porous carbons from collagen for electrocatalytic production of H2O2. Appl. Catal. B: Environ. 2012, 126, 208–214.

[44]

Wang, L.; Ambrosi, A.; Pumera, M. “Metal-free” catalytic oxygen reduction reaction on heteroatom-doped graphene is caused by trace metal impurities. Angew. Chem., Int. Ed. 2013, 52, 13818–13821.

Nano Research
Pages 11556-11563
Cite this article:
Gong H, Wei L, Chen S, et al. Carbon flowers as electrocatalysts for the reduction of oxygen to hydrogen peroxide. Nano Research, 2023, 16(9): 11556-11563. https://doi.org/10.1007/s12274-023-5903-8
Topics:
Part of a topical collection:

1341

Views

8

Crossref

9

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 24 March 2023
Revised: 15 May 2023
Accepted: 07 June 2023
Published: 14 July 2023
© Tsinghua University Press 2023
Return