Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Heterocyclic aramid fibers, a typical kind of high-performance fibers, have been widely used in aerospace and protection fields because of their excellent mechanical properties. However, the application of heterocyclic aramid fibers as a reinforcement is hindered by the weak interfacial combination with matrix materials, especially epoxy. Traditional strategies enhancing the interfacial shear strength (IFSS) usually decrease the tensile strength. Therefore, simultaneous enhancement of both mechanical properties remains a challenge. Herein, we report a novel heterocyclic aramid fiber with high interfacial shear strength (49.3 MPa) and tensile strength (6.27 GPa), in which 4,4′-diamino-2′-chlorobenzanilide (DABA-Cl) and a small amount of graphene oxide (GO) are introduced through in-situ polymerization. Hydrogen bonds and π–π interaction between GO and polymer chains trigger the enhancement in crystallinity, orientation, and lateral interaction of the fibers, thus improving the tensile strength and interfacial shear strength of the fibers. Moreover, the interfacial interaction between fiber and epoxy is enhanced due to the improvement of the surface polarity of the fibers caused by DABA-Cl. Therefore, a method to improve both tensile strength and interfacial shear strength of heterocyclic aramid fibers was found by introducing GO and DABA-Cl, which may provide guidance for the design and preparation of other high-performance fibers.
Li, J. Q.; Wen, Y. Y.; Xiao, Z. H.; Wang, S. J.; Zhong, L. X.; Li, T.; Jiao, K.; Li, L. Y.; Luo, J. J.; Gao, Z. F. et al. Holey reduced graphene oxide scaffolded heterocyclic aramid fibers with enhanced mechanical performance. Adv. Funct. Mater. 2022, 32, 2200937.
Kim, H. C.; Sodano, H. A. Ultra-high toughness fibers using controlled disorder of assembled aramid nanofibers. Adv. Funct. Mater. 2022, 33, 2208661.
Zhao, Y.; Li, X.; Shen, J. N.; Gao, C. J.; Van Der Bruggen, B. The potential of Kevlar aramid nanofiber composite membranes. J. Mater. Chem. A 2020, 8, 7548–7568.
Xie, C. J.; Guo, Z. X.; Qiu, T.; Tuo, X. L. Construction of aramid engineering materials via polymerization-induced para-aramid nanofiber hydrogel. Adv. Mater. 2021, 33, 2101280.
Zhou, J. Y.; Thaiboonrod, S.; Fang, J. H.; Cao, S. M.; Miao, M.; Feng, X. In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability. Nano Res. 2022, 15, 8536–8545.
Chen, F. X.; Zhai, L. S.; Yang, H. Y.; Zhao, S. C.; Wang, Z. L.; Gao, C.; Zhou, J. Y.; Liu, X.; Yu, Z. W.; Qin, Y. et al. Unparalleled armour for aramid fiber with excellent UV resistance in extreme environment. Adv. Sci. 2021, 8, 2004171.
Wang, H. M.; Wang, H. M.; Wang, Y. L.; Su, X. Y.; Wang, C. Y.; Zhang, M. C.; Jian, M. Q.; Xia, K. L.; Liang, X. P.; Lu, H. J. et al. Laser writing of janus graphene/kevlar textile for intelligent protective clothing. ACS Nano 2020, 14, 3219–3226.
Yang, B.; Wang, L.; Zhang, M. Y.; Luo, J. J.; Lu, Z. Q.; Ding, X. Y. Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 2020, 30, 2000186.
Su, L. Y.; Ma, X. Y.; Zhou, J. L.; Liu, X. C.; Du, F. L.; Teng, C. Large-scale preparation of high-performance boron nitride/aramid nanofiber dielectric composites. Nano Res. 2022, 15, 8648–8655.
Zuo, X. W.; Fan, T. T.; Qu, L. J.; Zhang, X. J.; Miao, J. L. Smart multi-responsive aramid aerogel fiber enabled self-powered fabrics. Nano Energy 2022, 101, 107559.
Yin, L. J.; Zhang, B.; Tian, M.; Ning, N. Y.; Zhang, L. Q.; Wang, W. C. Surface construction of ANF/CNT onto aramid fibers to enhance interfacial adhesion and provide real-time monitoring of deformation. Compos. Sci. Technol. 2022, 223, 109336.
Yuan, Y. H.; Dai, Y.; Meng, C. B.; Luo, L. B.; Liu, X. Y. Improving compressive strength of aramid fiber by introducing carbon nanotube derivates grafted with oligomers of different conformations and controlling its alignment. Macromol. Mater. Eng. 2019, 304, 1900127.
Nasser, J.; Zhang, L. S.; Lin, J. J.; Sodano, H. Aramid nanofiber reinforced polymer nanocomposites via amide–amide hydrogen bonding. ACS Appl. Polym. Mater. 2020, 2, 2934–2945.
Nam, K. H.; Yu, J.; You, N. H.; Han, H.; Ku, B. C. Synergistic toughening of polymer nanocomposites by hydrogen-bond assisted three-dimensional network of functionalized graphene oxide and carbon nanotubes. Compos. Sci. Technol. 2017, 149, 228–234.
Cheng, Z.; Zhang, L. J.; Jiang, C.; Dai, Y.; Meng, C. B.; Luo, L. B.; Liu, X. Y. Aramid fiber with excellent interfacial properties suitable for resin composite in a wide polarity range. Chem. Eng. J. 2018, 347, 483–492.
Stockdale, T. A.; Cole, D. P.; Staniszewski, J. M.; Roenbeck, M. R.; Papkov, D.; Lustig, S. R.; Dzenis, Y. A.; Strawhecker, K. E. Hierarchical mechanisms of lateral interactions in high-performance fibers. ACS Appl. Mater. Interfaces 2020, 12, 22256–22267.
Cheng, Z.; Liu, Y.; Meng, C. B.; Dai, Y.; Luo, L. B.; Liu, X. Y. Constructing a weaving structure for aramid fiber by carbon nanotube-based network to simultaneously improve composites interfacial properties and compressive properties. Compos. Sci. Technol. 2019, 182, 107721.
Yang, Y.; Min, C.; Xu, Z.; Liang, H.; Li, Q.; Ji, M.; Liu, S.; Wang, W.; Li, N.; Pei, X. Strong interfacial modified aramid fabric reinforced degradable thermosetting composites: Reinforcing and tribological effects. Mater. Today Chem. 2022, 24, 100795.
Gong, X. Y.; Liu, Y. Y.; Huang, M. N.; Dong, Q. L.; Naik, N.; Guo, Z. H. Dopamine-modified aramid fibers reinforced epoxidized natural rubber nanocomposites. Compos. Commun. 2022, 29, 100996.
Zhang, Y. H.; Huang, Y. D.; Liu, L.; Cai, K. L. Effects of γ-ray radiation grafting on aramid fibers and its composites. Appl. Surf. Sci. 2008, 254, 3153–3161.
Xing, L. X.; Liu, L.; He, M.; Wu, Z. J.; Huang, Y. D. Effect of different graft polymerization systems on surface modification of aramid fibers with Γ-ray radiation. Adv. Mater. Res. 2013, 658, 80–84.
Wang, J.; Chen, P.; Li, H.; Zhang, C. S.; Sun, B. L.; Zhang, X. Y. The analysis of Armos fibers reinforced poly(phthalazinone ether sulfone ketone) composite surfaces after oxygen plasma treatment. Surf. Coat. Technol. 2008, 202, 4986–4991.
Nasser, J.; Lin, J. J.; Steinke, K.; Sodano, H. A. Enhanced interfacial strength of aramid fiber reinforced composites through adsorbed aramid nanofiber coatings. Compos. Sci. Technol. 2019, 174, 125–133.
Chakraborty, D.; Saha, S.; Dey, S.; Pramanik, S. Enhanced mechanical toughness of carbon nanofibrous-coated surface modified Kevlar reinforced polyurethane/epoxy matrix hybrid composites. J. Appl. Polym. Sci. 2020, 137, 48802.
Ehlert, G. J.; Lin, Y. R.; Sodano, H. A. Carboxyl functionalization of carbon fibers through a grafting reaction that preserves fiber tensile strength. Carbon 2011, 49, 4246–4255.
Gao, B.; Zhang, R. L.; Gao, F. C.; He, M. S.; Wang, C. G.; Liu, L.; Zhao, L. F.; Cui, H. Z. Interfacial microstructure and enhanced mechanical properties of carbon fiber composites caused by growing generation 1–4 dendritic poly(amidoamine) on a fiber surface. Langmuir 2016, 32, 8339–8349.
Zhang, L. W.; Kong, H. J.; Qiao, M. M.; Ding, X. M.; Yu, M. H. Growing nano-SiO2 on the surface of aramid fibers assisted by supercritical CO2 to enhance the thermal stability, interfacial shear strength, and UV resistance. Polymers 2019, 11, 1397.
Lv, J. W.; Cheng, Z.; Wu, H.; He, T. J.; Qin, J. Q.; Liu, X. Y. In-situ polymerization and covalent modification on aramid fiber surface via direct fluorination for interfacial enhancement. Compos. Part B: Eng. 2020, 182, 107608.
Wang, L.; Shi, Y. X.; Chen, S. X.; Wang, W. C.; Tian, M.; Ning, N. Y.; Zhang, L. Q. Highly efficient mussel-like inspired modification of aramid fibers by UV-accelerated catechol/polyamine deposition followed chemical grafting for high-performance polymer composites. Chem. Eng. J. 2017, 314, 583–593.
Dai, Y.; Han, Y. T.; Yuan, Y. H.; Meng, C. B.; Cheng, Z.; Luo, L. B.; Qin, J. Q.; Liu, X. Y. Synthesis of heterocyclic aramid fiber based on solid-phase cross-linking of oligomers with reactive end group. Macromol. Mater. Eng. 2018, 303, 1800076.
Dai, Y.; Yuan, Y. H.; Luo, L. B.; Liu, X. Y. A facile strategy for fabricating aramid fiber with simultaneously high compressive strength and high interfacial shear strength through cross-linking promoted by oxygen. Compos. Part A:Appl. Sci. Manuf. 2018, 113, 233–241.
Wen, F.; Zhu, C. L.; Li, L. L.; Zhou, B.; Zhang, L.; Han, C.; Li, W. J.; Yue, Z. J.; Wu, W.; Wang, G. F. et al. Enhanced energy storage performance of polymer nanocomposites using hybrid 2D ZnO@MoS2 semiconductive nano-fillers. Chem. Eng. J. 2022, 430, 132676.
Mechin, P. Y.; Keryvin, V.; Grandidier, J. C. Effect of the nano-filler content on the compressive strength of continuous carbon fibre/epoxy matrix composites. Compos. Part B:Eng. 2021, 224, 109223.
Luo, J. J.; Wen, Y. Y.; Jia, X. Z.; Lei, X. D.; Gao, Z. F.; Jian, M. Q.; Xiao, Z. H.; Li, L. Y.; Zhang, J. W.; Li, T. et al. Fabricating strong and tough aramid fibers by small addition of carbon nanotubes. Nat. Commun. 2023, 14, 3019.
Palermo, V.; Kinloch, I. A.; Ligi, S.; Pugno, N. M. Nanoscale mechanics of graphene and graphene oxide in composites: A scientific and technological perspective. Adv. Mater. 2016, 28, 6232–6238.
Kinloch, I. A.; Suhr, J.; Lou, J.; Young, R. J.; Ajayan, P. M. Composites with carbon nanotubes and graphene: An outlook. Science 2018, 362, 547–553.
Gong, L.; Young, R. J.; Kinloch, I. A.; Riaz, I.; Jalil, R.; Novoselov, K. S. Optimizing the reinforcement of polymer-based nanocomposites by graphene. ACS Nano 2012, 6, 2086–2095.
Kim, J.; Kim, J.; Song, S.; Zhang, S. Y.; Cha, J.; Kim, K.; Yoon, H.; Jung, Y.; Paik, K. W.; Jeon, S. Strength dependence of epoxy composites on the average filler size of non-oxidized graphene flake. Carbon 2017, 113, 379–386.
Gao, Z.; Zhu, J. D.; Rajabpour, S.; Joshi, K.; Kowalik, M.; Croom, B.; Schwab, Y.; Zhang, L. W.; Bumgardner, C.; Brown, K. R. et al. Graphene reinforced carbon fibers. Sci. Adv. 2020, 6, eaaz4191.
Zhou, H.; Jiao, K. Carbonene materials modified high-performance polymer fibers: Preparation, properties, and applications. Acta Phys. Chim. Sin. 2022, 38, 2111041.
Li, T. J.; Meng, Z. X.; Keten, S. Interfacial mechanics and viscoelastic properties of patchy graphene oxide reinforced nanocomposites. Carbon 2020, 158, 303–313.
Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. Graphene oxide dispersions in organic solvents. Langmuir 2008, 24, 10560–10564.
Wang, G. R.; Liu, L. Q.; Zhang, Z. Interface mechanics in carbon nanomaterials-based nanocomposites. Compos. Part A:Appl. Sci. Manuf. 2021, 141, 106212.
Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S. et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331.
Ming, X.; Wei, A. R.; Liu, Y. J.; Peng, L.; Li, P.; Wang, J. Q.; Liu, S. P.; Fang, W. Z.; Wang, Z. Q.; Peng, H. Q. et al. 2D-topology-seeded graphitization for highly thermally conductive carbon fibers. Adv. Mater. 2022, 34, 2201867.
Qiu, B. W.; Sun, T.; Yuan, M. S.; Zhang, H. R.; Chen, Y.; Zhou, S. T.; Heng, Z. G.; Liang, M.; Zou, H. W. Effect of different lateral dimension graphene oxide sheets on the interface of carbon fiber reinforced polymer composites. Compos. Sci. Technol. 2021, 213, 108939.
Luo, L. B.; Yuan, Y. H.; Dai, Y.; Cheng, Z.; Wang, X.; Liu, X. Y. The novel high performance aramid fibers containing benzimidazole moieties and chloride substitutions. Mater. Des. 2018, 158, 127–135.
Sweeny, W. Improvements in compressive properties of high modulus fibers by crosslinking. J. Polym. Sci. Part A Polym. Chem. 1992, 30, 1111–1122.