AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly efficient 1D p-Te/2D n-Bi2Te3 heterojunction self-driven broadband photodetector

Chenchen Zhao1Dongbo Wang1( )Jiamu Cao2( )Zhi Zeng1Bingke Zhang1Jingwen Pan1Donghao Liu1Sihang Liu1Shujie Jiao1Tianyuan Chen1Gang Liu3( )Xuan Fang4( )Liancheng Zhao1Jinzhong Wang1( )
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130022, China
Show Author Information

Graphical Abstract

Hybrid 1D p-Te/2D n-Bi2Te3 devices are assembled broad-band self-driven photochemical photodetectors with excellent optical response performance.

Abstract

Broadband photodetectors with self-driven functions have attracted intensive scientific interest due to their low energy consumption and high optical gain. However, high-performance broadband self-driven photodetectors are still a significant challenge due to the complex fabrication processes, environmental toxicity, high production costs of traditional 3D semiconductor materials and sharply raised contact resistance, severe interfacial recombination of 2D materials and 2D/3D mixed dimension heterojunction. Here, 1D p-Te/2D n-Bi2Te3 heterojunctions are constructed by the simple and low-cost hydrothermal method. 1D p-Te/2D n-Bi2Te3 devices are applied in photoelectrochemical (PEC) photodetectors, with their high performance attributed to the good interfacial contacts reducing interface recombination. The device demonstrated a broad wavelength range (365–850 nm) with an Iph/Idark as high as 377.45. The Ri, D*, and external quantum efficiency (EQE) values of the device were as high as 12.07 mA/W, 5.87 × 1010 Jones, and 41.05%, respectively, which were significantly better than the performance of the prepared Bi2Te3 and Te devices. A comparison of the freshly fabricated device and the device after 30 days showed that 1D p-Te/2D n-Bi2Te3 had excellent stability with only 18.08% decay of photocurrent. It is anticipated that this work will provide new emerging material for future design and preparation of a high-performance self-driven broadband photodetector.

Electronic Supplementary Material

Download File(s)
12274_2023_5905_MOESM1_ESM.pdf (650.1 KB)

References

[1]

Shi, Z.; Zhang, H.; Khan, K.; Cao, R.; Zhang, Y.; Ma, C. Y.; Tareen, A. K.; Jiang, Y. F.; Jin, M. X.; Zhang, H. Two-dimensional materials toward terahertz optoelectronic device applications. J. Photochem. Photobiol. C:Photochem. Rev. 2022, 51, 100473.

[2]

Yadav, P. V. K.; Ajitha, B.; Kumar Reddy, Y. A.; Sreedhar, A. Recent advances in development of nanostructured photodetectors from ultraviolet to infrared region: A review. Chemosphere 2021, 279, 130473.

[3]

Lukman, S.; Ding, L.; Xu, L.; Tao, Y.; Riis-Jensen, A. C.; Zhang, G.; Wu, Q. Y. S.; Yang, M.; Luo, S.; Hsu, C. et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 2020, 15, 675–682.

[4]

Zhang, X. C.; Liu, X. C.; Zhang, C. Y.; Peng, S. L.; Zhou, H. X.; He, L.; Gou, J.; Wang, X. R.; Wang, J. Epitaxial topological insulator Bi2Te3 for fast visible to mid-infrared heterojunction photodetector by graphene As charge collection medium. ACS Nano 2022, 16, 4851–4860.

[5]

Sun, H. H.; Jiang, T.; Zang, Y. Y.; Zheng, X.; Gong, Y.; Yan, Y.; Xu, Z. J.; Liu, Y.; Fang, L.; Cheng, X. A. et al. Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures. Nanoscale 2017, 9, 9325–9332.

[6]

Yu, W. Z.; Dong, Z.; Mu, H. R.; Ren, G. H.; He, X. Y.; Li, X.; Lin, S. H.; Zhang, K.; Bao, Q. L.; Mokkapati, S. Wafer-scale synthesis of 2D dirac heterostructures for self-driven, fast, broadband photodetectors. ACS Nano 2022, 16, 12922–12929.

[7]

Linder, J.; Tanaka, Y.; Yokoyama, T.; Sudbø, A.; Nagaosa, N. Unconventional superconductivity on a topological insulator. Phys. Rev. Lett. 2010, 104, 067001.

[8]

Qin, H. L.; Guo, B.; Wang, L. J.; Zhang, M.; Xu, B. C.; Shi, K. G.; Pan, T. L.; Zhou, L.; Chen, J. S.; Qiu, Y. et al. Superconductivity in single-quintuple-layer Bi2Te3 grown on epitaxial FeTe. Nano Lett. 2020, 20, 3160–3168.

[9]

Charpentier, S.; Galletti, L.; Kunakova, G.; Arpaia, R.; Song, Y. X.; Baghdadi, R.; Wang, S. M.; Kalaboukhov, A.; Olsson, E.; Tafuri, F. et al. Induced unconventional superconductivity on the surface states of Bi2Te3 topological insulator. Nat. Commun. 2017, 8, 2019.

[10]

Sharma, S.; Schwingenschlögl, U. Thermoelectric response in single quintuple layer Bi2Te3. ACS Energy Lett. 2016, 1, 875–879.

[11]

Mamur, H.; Bhuiyan, M. R. A.; Korkmaz, F.; Nil, M. A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renew. Sustain. Energy Rev. 2018, 82, 4159–4169.

[12]

Zhu, B.; Wang, W.; Cui, J.; He, J. Q. Point defect engineering: Co-doping synergy realizing superior performance in n-type Bi2Te3 thermoelectric materials. Small 2021, 17, 2101328.

[13]

Zhu, Y. K.; Guo, J.; Chen, L.; Gu, S. W.; Zhang, Y. X.; Shan, Q.; Feng, J.; Ge, Z. H. Simultaneous enhancement of thermoelectric performance and mechanical properties in Bi2Te3 via Ru compositing. Chem. Eng. J. 2021, 407, 126407.

[14]

Lou, L. Y.; Yang, J. M.; Zhu, Y. K.; Liang, H.; Zhang, Y. X.; Feng, J.; He, J. Q.; Ge, Z. H.; Zhao, L. D. Tunable electrical conductivity and simultaneously enhanced thermoelectric and mechanical properties in n-type Bi2Te3. Adv. Sci. 2022, 9, 2203250.

[15]

Wang, Y.; Xiu, F.; Cheng, L. N.; He, L.; Lang, M. R.; Tang, J. S.; Kou, X. F.; Yu, X. X.; Jiang, X. W.; Chen, Z. G. et al. Gate-controlled surface conduction in Na-doped Bi2Te3 topological insulator nanoplates. Nano Lett. 2012, 12, 1170–1175.

[16]

Zhang, H. B.; Zhang, X. J.; Liu, C.; Lee, S. T.; Jie, J. S. High-responsivity, high-detectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors. ACS Nano 2016, 10, 5113–5122.

[17]

Sharma, A.; Srivastava, A. K.; Senguttuvan, T. D.; Husale, S. Robust broad spectral photodetection (UV-NIR) and ultra high responsivity investigated in nanosheets and nanowires of Bi2Te3 under harsh nano-milling condition. Sci. Rep. 2017, 7, 17911.

[18]

Qiao, H.; Yuan, J.; Xu, Z. Q.; Chen, C. Y.; Lin, S. H.; Wang, Y. S.; Song, J. C.; Liu, Y.; Khan, Q.; Hoh, H. Y. et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure. ACS Nano 2015, 9, 1886–1894.

[19]

Zhang, Y.; Zhang, F.; Xu, Y. G.; Huang, W. C.; Wu, L. M.; Dong, Z. J.; Zhang, Y. P.; Dong, B. Q.; Zhang, X. W.; Zhang, H. Epitaxial growth of topological insulators on semiconductors (Bi2Se3/Te@Se) toward high-performance photodetectors. Small Methods 2019, 3, 1900349.

[20]

Liu, H. W.; Zhu, X. L.; Sun, X. X.; Zhu, C. G.; Huang, W.; Zhang, X. H.; Zheng, B. Y.; Zou, Z. X.; Luo, Z. Y.; Wang, X. et al. Self-powered broad-band photodetectors based on vertically stacked WSe2/Bi2Te3 p-n heterojunctions. ACS Nano 2019, 13, 13573–13580.

[21]

Yao, J. D.; Yang, G. W. Flexible and high-performance All-2D photodetector for wearable devices. Small 2018, 14, 1704524.

[22]

Yang, M.; Wang, J.; Zhao, Y. F.; He, L.; Ji, C. H.; Liu, X. C.; Zhou, H. X.; Wu, Z. M.; Wang, X. R.; Jiang, Y. D. Three-dimensional topological insulator Bi2Te3/organic thin film heterojunction photodetector with fast and wideband response from 450 to 3500 nanometers. ACS Nano 2019, 13, 755–763.

[23]

Hasani, A.; Mohammadzadeh, M. R.; Ghanbari, H.; Fawzy, M.; De Silva, T.; Abnavi, A.; Ahmadi, R.; Askar, A. M.; Kabir, F.; Rajapakse, R. K. N. D. et al. Self-powered, broadband photodetector based on two-dimensional tellurium-silicon heterojunction. ACS Omega 2022, 7, 48383–48390.

[24]

Luo, Z. T.; Xu, H. K.; Gao, W.; Yang, M. M.; He, Y.; Huang, Z. H.; Yao, J. D.; Zhang, M. L.; Dong, H. F.; Zhao, Y. et al. High-performance and polarization-sensitive imaging photodetector based on WS2/Te tunneling heterostructure. Small 2023, 19, 2207615.

[25]

Yao, J. R.; Chen, F. F.; Li, J. J.; Du, J. L.; Wu, D.; Tian, Y. T.; Zhang, C.; Yang, J. K.; Li, X. J.; Lin, P. A high-performance short-wave infrared phototransistor based on a 2D tellurium/MoS2 van der Waals heterojunction. J. Mater. Chem. C 2021, 9, 13123–13131.

[26]

Yan, Y. X.; Li, Z. X.; Li, L. L.; Lou, Z. Stereopsis-inspired 3D visual imaging system based on 2D ruddlesden-popper perovskite. Small 2023, e2300831.

[27]

Li, X. Z.; Wei, Y.; Wang, Z. J.; Kong, Y.; Su, Y. P.; Lu, G. T.; Mei, Z.; Su, Y.; Zhang, G. Q.; Xiao, J. H. et al. One-dimensional semimetal contacts to two-dimensional semiconductors. Nat. Commun. 2023, 14, 111.

[28]

Wu, W. Z.; Qiu, G.; Wang, Y. X.; Wang, R. X.; Ye, P. D. Tellurene: Its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 2018, 47, 7203–7212.

[29]

Gan, X. T.; Li, J. J.; Xu, M. Z.; Wang, X. W.; Liu, Z.; Zhao, J. L. Giant and anisotropic nonlinear optical responses of 1D van der waals material tellurium. Adv. Opt. Mater. 2020, 8, 2001273.

[30]

Guo, S. Y.; Xu, H.; Zheng, Y. Q.; Li, L. L.; Li, Z. X.; Zhang, L.; Zhang, H. B.; Wang, X. B.; Li, J. H.; Wang, L. L. et al. Stretchable reconfigurable logic gate based on near-infrared photoelectric modulation. Nano Energy 2023, 110, 108361.

[31]

Mo, M.; Zeng, J.; Liu, X.; Yu, W.; Zhang, S.; Qian, Y. Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Adv. Mater. 2002, 22, 1658–1662.

[32]

Li, C.; Zhang, L.; Gong, T.; Cheng, Y. F.; Li, L. Y.; Li, L.; Jia, S. F.; Qi, Y. J.; Wang, J. B.; Gao, Y. H. Study of the growth mechanism of solution-synthesized symmetric tellurium nanoflakes at atomic resolution. Small 2021, 17, 2005801.

[33]

Zhu, H. T.; Luo, J.; Liang, J. K. Synthesis of highly crystalline Bi2Te3 nanotubes and their enhanced thermoelectric properties. J. Mater. Chem. A 2014, 2, 12821–12826.

[34]

Feng, J. J.; Wang, H. C.; Guo, L.; Su, W. B.; Zhao, L. W.; Li, G. Y.; Chen, T. T.; Wang, C. L.; Dang, F. Stacking surface derived catalytic capability and by-product prevention for high efficient two dimensional Bi2Te3 cathode catalyst in Li-oxygen batteries. Appl. Catal. B:Environ. 2022, 318, 121844.

[35]

Fei, F. C.; Wei, Z. X.; Wang, Q. J.; Lu, P. C.; Wang, S. B.; Qin, Y. Y.; Pan, D. F.; Zhao, B.; Wang, X. F.; Sun, J. et al. Solvothermal synthesis of lateral heterojunction Sb2Te3/Bi2Te3 nanoplates. Nano Lett. 2015, 15, 5905–5911.

[36]

Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

[37]

Lu, Q.; Gao, F.; Komarneni, S. Biomolecule-assisted reduction in the synthesis of single-crystalline tellurium nanowires. Adv. Mater. 2004, 16, 1629–1632.

[38]

Zheng, B. N.; Wu, Z. H.; Guo, F.; Ding, R.; Mao, J. F.; Xie, M. H.; Lau, S. P.; Hao, J. H. Large-area tellurium/germanium heterojunction grown by molecular beam epitaxy for high-performance self-powered photodetector. Adv. Opt. Mater. 2021, 9, 2101052.

[39]

Jeong, K.; Park, D.; Maeng, I.; Kim, D.; Kwon, H.; Kang, C.; Cho, M. H. Modulation of optoelectronic properties of the Bi2Te3 nanowire by controlling the formation of selective surface oxidation. Appl. Surf. Sci. 2021, 548, 149069.

[40]

Concepción, O.; Galván-Arellano, M.; Torres-Costa, V.; Climent-Font, A.; Bahena, D.; Manso Silván, M.; Escobosa, A.; De Melo, O. Controlling the epitaxial growth of Bi2Te3, BiTe, and Bi4Te3 pure phases by physical vapor transport. Inorg. Chem. 2018, 57, 10090–10099.

[41]

Ngabonziza, P.; Stehno, M. P.; Myoren, H.; Neumann, V. A.; Koster, G.; Brinkman, A. Gate-tunable transport properties of in situ capped Bi2Te3 topological insulator thin films. Adv. Electron. Mater. 2016, 2, 1600157.

[42]

Thomas, C. R.; Vallon, M. K.; Frith, M. G.; Sezen, H.; Kushwaha, S. K.; Cava, R. J.; Schwartz, J.; Bernasek, S. L. Surface oxidation of Bi2(Te, Se)3 topological insulators depends on cleavage accuracy. Chem. Mater. 2016, 28, 35–39.

[43]

Huang, W. C.; Zhang, Y.; You, Q.; Huang, P.; Wang, Y. Z.; Huang, Z. N.; Ge, Y. Q.; Wu, L. M.; Dong, Z. J.; Dai, X. Y. et al. Enhanced photodetection properties of tellurium@selenium roll-to-roll nanotube heterojunctions. Small 2019, 15, 1900902.

[44]

Smyth, C. M.; Zhou, G. Y.; Barton, A. T.; Wallace, R. M.; Hinkle, C. L. Controlling the Pd metal contact polarity to trigonal tellurium by atomic hydrogen-removal of the native tellurium oxide. Adv. Mater. Interfaces 2021, 8, 2002050.

[45]

Pradhan, A.; Roy, A.; Tripathi, S.; Som, A.; Sarkar, D.; Mishra, J. K.; Roy, K.; Pradeep, T.; Ravishankar, N.; Ghosh, A. Ultra-high sensitivity infra-red detection and temperature effects in a graphene-tellurium nanowire binary hybrid. Nanoscale 2017, 9, 9284–9290.

[46]

Calavalle, F.; Suárez-Rodríguez, M.; Martín-García, B.; Johansson, A.; Vaz, D. C.; Yang, H. Z.; Maznichenko, I. V.; Ostanin, S.; Mateo-Alonso, A.; Chuvilin, A. et al. Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires. Nat. Mater. 2022, 21, 526–532.

[47]

Yao, J. D.; Zheng, Z. Q.; Yang, G. W. All-layered 2D optoelectronics: A high-performance UV-Vis-NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes. Adv. Funct. Mater. 2017, 27, 1701823.

[48]

Wei, L. B.; Li, Y. R.; Tian, C. F.; Jiang, J. Recent progress in anisotropic 2D semiconductors: From material properties to photoelectric detection. Phys. Status Solidi Appl. Mater. Sci. 2021, 218, 2100204.

[49]

Yan, Y. X.; Ran, W. H.; Li, Z. X.; Li, L. L.; Lou, Z.; Shen, G. Z. Modify Cd3As2 nanowires with sulfur to fabricate self-powered NIR photodetectors with enhanced performance. Nano Res. 2021, 14, 3379–3385.

[50]

Li, L. L.; Zhao, S. F.; Ran, W. H.; Li, Z. X.; Yan, Y. X.; Zhong, B. W.; Lou, Z.; Wang, L. L.; Shen, G. Z. Dual sensing signal decoupling based on tellurium anisotropy for VR interaction and neuro-reflex system application. Nat. Commun. 2022, 13, 5975.

[51]

You, S.; Zhang, L.; Yang, Q. Unconventionally anisotropic growth of PbSe nanorods: Controllable fabrication under solution-solid-solid regime over Ag2Se catalysis for broadband photodetection. Nano Res. 2021, 14, 3386–3394.

[52]

Chakraborty, M.; Bhattacharyya, S. Air-annealed growth and characterization of Cd1-xZnxTe thin films grown from CdTe/ZnTe/CdTe multi-stacks. Vacuum 2018, 149, 156–167.

[53]

Guo, S. Y.; Zhu, Z.; Hu, X. M.; Zhou, W. H.; Song, X. F., Zhang, S. L.; Zhang, K.; Zeng, H. B. Ultrathin tellurium dioxide: Emerging direct bandgap semiconductor with high-mobility transport anisotropy. Nanoscale 2018, 10, 8397–8403.

[54]

An, X. H.; Liu, F. Z.; Jung, Y. J.; Kar, S. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 2013, 13, 909–916.

[55]

Thai, K. Y.; Park, I.; Kim, B. J.; Hoang, A. T.; Na, Y.; Park, C. U.; Chae, Y.; Ahn, J. H. MoS2/graphene photodetector array with strain-modulated photoresponse up to the near-infrared regime. ACS Nano 2021, 15, 12836–12846.

[56]

Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van Der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 μm. Adv. Mater. 2020, 32, 2004412.

[57]

Tsai, T. H.; Liang, Z. Y.; Lin, Y. C.; Wang, C. C.; Lin, K. I.; Suenaga, K.; Chiu, P. W. Photogating WS2 photodetectors using embedded WSe2 charge puddles. ACS Nano 2020, 14, 4559–4566.

[58]

Xiao, M. Q.; Yang, H.; Shen, W. F.; Hu, C. G.; Zhao, K.; Gao, Q.; Pan, L. F.; Liu, L. Y.; Wang, C. L.; Shen, G. Z. et al. Symmetry-reduction enhanced polarization-sensitive photodetection in core-shell SbI3/Sb2O3 van Der Waals heterostructure. Small 2020, 16, 1907172.

[59]

Zhang, Y.; Zhang, F.; Wu, L. M.; Zhang, Y. P.; Huang, W. C.; Tang, Y. F.; Hu, L. P.; Huang, P.; Zhang, X. W.; Zhang, H. Van Der Waals integration of bismuth quantum dots-decorated tellurium nanotubes (Te@Bi) heterojunctions and plasma-enhanced optoelectronic applications. Small 2019, 15, 1903233.

[60]

Wang, Y. F.; Xia, J.; Li, X. Z.; Ru, F.; Chen, X.; Hua, Z.; Shao, R. W.; Wang, X. C.; Zhang, W. J.; Lee, C. S.; Meng, X. M. Vapor phase epitaxy of PbS single-crystal films on water-soluble substrates and application to photodetectors. Nano Res. 2022, 15, 5402–5409.

[61]

Shang, H. M.; Chen, H. Y.; Dai, M. J.; Hu, Y. X.; Gao, F.; Yang, H. H.; Xu, B.; Zhang, S. C.; Tan, B. Y.; Zhang, X. et al. A mixed-dimensional 1D Se-2D InSe van der Waals heterojunction for high responsivity self-powered photodetectors. Nanoscale Horiz. 2020, 5, 564–572.

[62]

Qin, J. K.; Yan, H.; Qiu, G.; Si, M. W.; Miao, P.; Duan, Y. Q.; Shao, W. Z.; Zhen, L.; Xu, C. Y.; Ye, P. D. Hybrid dual-channel phototransistor based on 1D t-Se and 2D ReS2 mixed-dimensional heterostructures. Nano Res. 2019, 12, 669–674.

[63]

Hong, S. B.; Kim, D. K.; Chae, J.; Kim, K.; Jeong, K.; Kim, J.; Park, H.; Park, H.; Yi, Y.; Cho, M. H. Enhanced photoinduced carrier generation efficiency through surface band bending in topological insulator Bi2Se3 thin films by the oxidized layer. ACS Appl. Mater. Interfaces 2020, 12, 26649–26658.

[64]

Li, D. W.; Zou, Q. M.; Huang, X.; Rabiee Golgir, H.; Keramatnejad, K.; Song, J. F.; Xiao, Z. Y.; Fan, L. S.; Hong, X.; Jiang, L. et al. Controlled defect creation and removal in graphene and MoS2 monolayers. Nanoscale 2017, 9, 8997–9008.

[65]

Xu, W. P.; Gan, L. Y.; Wang, R.; Wu, X. Z.; Xu, H. Surface adsorption and vacancy in tuning the properties of tellurene. ACS Appl. Mater. Interfaces 2020, 12, 19110–19115.

[66]

Chang, Y. Q.; Wang, P. W.; Ni, S. L.; Long, Y.; Li, X. D. Influence of Co content on raman and photoluminescence spectra of Co Doped ZnO nanowires. J. Mater. Sci. Technol. 2012, 28, 313–316.

[67]

Dai, M. J.; Chen, H. Y.; Wang, F. K.; Long, M. S.; Shang, H. M.; Hu, Y. X.; Li, W.; Ge, C. Y.; Zhang, J.; Zhai, T. Y. et al. Ultrafast and sensitive self-powered photodetector featuring self-limited depletion region and fully depleted channel with van der Waals Contacts. ACS Nano 2020, 14, 9098–9106.

[68]

Wu, F.; Xia, H.; Sun, H. D.; Zhang, J. W.; Gong, F.; Wang, Z.; Chen, L.; Wang, P.; Long, M. S.; Wu, X. et al. AsP/InSe Van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity. Adv. Funct. Mater. 2019, 29, 1900314.

[69]

Tao, J. J.; Jiang, J. B.; Zhao, S. N.; Zhang, Y.; Li, X. X.; Fang, X. S.; Wang, P.; Hu, W. D.; Lee, Y. H.; Lu, H. L. et al. Fabrication of 1D Te/2D ReS2 mixed-dimensional van der waals p-n heterojunction for high-performance phototransistor. ACS Nano 2021, 15, 3241–3250.

[70]

Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178–181.

[71]

Sacco, A. Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renew. Sustain. Energy Rev. 2017, 79, 814–829.

[72]

Zhang, B. K.; Wang, D. B.; Jiao, S. J.; Xu, Z. K.; Liu, Y. X.; Zhao, C. C.; Pan, J. W.; Liu, D. H.; Liu, G.; Jiang, B. J. et al. TiO2-X mesoporous nanospheres/BiOI nanosheets S-scheme heterostructure for high efficiency, stable and unbiased photocatalytic hydrogen production. Chem. Eng. J. 2022, 446, 137138.

[73]

Lu, L. L.; Li, R. J.; Fan, K.; Peng, T. Y. Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles. Sol. Energy 2010, 84, 844–853.

[74]

Ou, J. Z.; Rani, R. A.; Ham, M. H.; Field, M. R.; Zhang, Y.; Zheng, H. D.; Reece, P.; Zhuiykov, S.; Sriram, S.; Bhaskaran, M. et al. Elevated temperature anodized Nb2O5: A photoanode material with exceptionally large photoconversion efficiencies. ACS Nano 2012, 6, 4045–4053.

[75]

Zhang, Y.; Xing, C. C.; Liu, Y.; Li, M. Y.; Xiao, K.; Guardia, P.; Lee, S.; Han, X.; Ostovari Moghaddam, A.; Josep Roa, J. et al. Influence of Copper telluride nanodomains on the transport properties of N-Type bismuth telluride. Chem. Eng. J. 2021, 418, 129374.

[76]

Qu, D. X.; Hor, Y. S.; Xiong, J.; Cava, R. J.; Ong, N. P. Quantum oscillations and hall anomaly of surface states in the topological insulator Bi2Te3. Science 2010, 329, 821–824.

Nano Research
Pages 1864-1874
Cite this article:
Zhao C, Wang D, Cao J, et al. Highly efficient 1D p-Te/2D n-Bi2Te3 heterojunction self-driven broadband photodetector. Nano Research, 2024, 17(3): 1864-1874. https://doi.org/10.1007/s12274-023-5905-6
Topics:

787

Views

12

Crossref

13

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 18 April 2023
Revised: 26 May 2023
Accepted: 07 June 2023
Published: 29 July 2023
© Tsinghua University Press 2023
Return