Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Development of simple methods for controlled integration of DNA molecules with metal-organic frameworks (MOFs) is important for various biomedical applications, yet remains a challenge. Herein, a simple and general approach to load DNA on the surface of MOFs is developed via one-pot self-assembly of DNA and FeII ions on nanoscale MOFs, resulting in hierarchical core-shell nanostructures of metal-organic@metal-DNA coordination polymers. The strategy enables assembly of DNA molecules on MOFs with ultra-high contents and precise controllability. By incorporation of a chemotherapeutic drug into the Fe-DNA shell, the systems allow to integrate chemotherapy and gene therapy with photodynamic therapy for combinational tumor treatment. Moreover, the hybrid nanostructures enable light-triggered production of cytotoxic singlet oxygen, which further boosts the endosomal escape of the system for an enhanced gene silencing efficacy and thus improved therapeutic outcome. This work highlights a robust approach for the construction of coordination-based drug delivery systems to combat tumor.
Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.
Zhou, H. C.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418.
Xiao, X.; Liang, S.; Zhao, Y. J.; Pang, M. L.; Ma, P. A.; Cheng, Z. Y.; Lin, J. Multifunctional carbon monoxide nanogenerator as immunogenic cell death drugs with enhanced antitumor immunity and antimetastatic effect. Biomaterials 2021, 277, 121120.
Zhuang, J.; Duan, Y. O.; Zhang, Q. Z.; Gao, W. W.; Li, S. L.; Fang, R. H.; Zhang, L. F. Multimodal enzyme delivery and therapy enabled by cell membrane-coated metal-organic framework nanoparticles. Nano Lett. 2020, 20, 4051–4058.
Xiao, Y. F.; Tang, Z. M.; Wang, J. Q.; Liu, C.; Kong, N.; Farokhzad, O. C.; Tao, W. Oral insulin delivery platforms: Strategies to address the biological barriers. Angew. Chem., Int. Ed. 2020, 59, 19787–19795.
Li, J. C.; Luo, Y.; Pu, K. Y. Electromagnetic nanomedicines for combinational cancer immunotherapy. Angew. Chem., Int. Ed. 2021, 60, 12682–12705.
Chen, T. T.; Yi, J. T.; Zhao, Y. Y.; Chu, X. Biomineralized metal-organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins. J. Am. Chem. Soc. 2018, 140, 9912–9920.
Zhao, H. X.; Shu, G.; Zhu, J. Y.; Fu, Y. Y.; Gu, Z.; Yang, D. Y. Persistent luminescent metal-organic frameworks with long-lasting near infrared emission for tumor site activated imaging and drug delivery. Biomaterials 2019, 217, 119332.
Li, Z. K.; Qiao, X.; He, G. H.; Sun, X.; Feng, D. H.; Hu, L. F.; Xu, H.; Xu, H. B.; Ma, S. Q.; Tian, J. Core-satellite metal-organic framework@upconversion nanoparticle superstructures via electrostatic self-assembly for efficient photodynamic theranostics. Nano Res. 2020, 13, 3377–3386.
Ouyang, J.; Xie, A.; Zhou, J.; Liu, R. C.; Wang, L. Q.; Liu, H. J.; Kong, N.; Tao, W. Minimally invasive nanomedicine: Nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem. Soc. Rev. 2022, 51, 4996–5041.
Yu, L.; Yu, M.; Chen, W.; Sun, S. J.; Huang, W. X.; Wang, T. Q.; Peng, Z. W.; Luo, Z. W.; Fang, Y. X.; Li, Y. J. et al. In situ separable nanovaccines with stealthy bioadhesive capability for durable cancer immunotherapy. J. Am. Chem. Soc. 2023, 145, 8375–8388.
Ji, X. Y.; Tang, Z. M.; Liu, H. J.; Kang, Y.; Chen, L. Q.; Dong, J. R.; Chen, W.; Kong, N.; Tao, W.; Xie, T. Nanoheterojunction-mediated thermoelectric strategy for cancer surgical adjuvant treatment and β-elemene combination therapy. Adv. Mater. 2023, 35, 2207391.
Zou, Z.; He, L. B.; Deng, X. X.; Wang, H. X.; Huang, Z. Y.; Xue, Q.; Qing, Z. H.; Lei, Y. L.; Yang, R. H.; Liu, J. W. Zn2+-coordination-driven RNA assembly with retained integrity and biological functions. Angew. Chem., Int. Ed. 2021, 60, 22970–22976.
Lin, G.; Zhang, Y.; Zhang, L.; Wang, J. Q.; Tian, Y.; Cai, W.; Tang, S. G.; Chu, C. C.; Zhou, J. J.; Mi, P. et al. Metal-organic frameworks nanoswitch: Toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference. Nano Res. 2020, 13, 238–245.
Ni, K. Y.; Luo, T. K.; Lan, G. X.; Culbert, A.; Song, Y.; Wu, T.; Jiang, X. M.; Lin, W. B. A nanoscale metal-organic framework to mediate photodynamic therapy and deliver CpG oligodeoxynucleotides to enhance antigen presentation and cancer immunotherapy. Angew. Chem., Int. Ed. 2020, 59, 1108–1112.
Peng, S.; Bie, B. L.; Sun, Y. Z. S.; Liu, M.; Cong, H. J.; Zhou, W. T.; Xia, Y. C.; Tang, H.; Deng, H. X.; Zhou, X. Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat. Commun. 2018, 9, 1293.
Zhuang, J.; Gong, H.; Zhou, J. R.; Zhang, Q. Z.; Gao, W. W.; Fang, R. H.; Zhang, L. F. Targeted gene silencing in vivo by platelet membrane-coated metal-organic framework nanoparticles. Sci. Adv. 2020, 6, eaaz6108.
Wang, Z.; Niu, J. S.; Zhao, C. Q.; Wang, X. H.; Ren, J. S.; Qu, X. G. A bimetallic metal-organic framework encapsulated with DNAzyme for intracellular drug synthesis and self-sufficient gene therapy. Angew. Chem., Int. Ed. 2021, 60, 12431–12437.
Wang, H. M.; Chen, Y. Q.; Wang, H.; Liu, X. Q.; Zhou, X.; Wang, F. DNAzyme-loaded metal-organic frameworks (MOFs) for self-sufficient gene therapy. Angew. Chem., Int. Ed. 2019, 58, 7380–7384.
Chen, X. J.; Tang, Q. Y.; Wang, J. Q.; Zhou, Y.; Li, F. Q.; Xie, Y. X.; Wang, X. G.; Du, L.; Li, J. R.; Pu, J. et al. A DNA/DMXAA/metal-organic framework activator of innate immunity for boosting anticancer immunity. Adv. Mater. 2023, 35, 2210440.
Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J. et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 2015, 6, 7240.
Li, Y. T.; Zhang, K.; Liu, P. R.; Chen, M.; Zhong, Y. L.; Ye, Q. S.; Wei, M. Q.; Zhao, H. J.; Tang, Z. Y. Encapsulation of plasmid DNA by nanoscale metal-organic frameworks for efficient gene transportation and expression. Adv. Mater. 2019, 31, 1901570.
Alyami, M. Z.; Alsaiari, S. K.; Li, Y. Y.; Qutub, S. S.; Aleisa, F. A.; Sougrat, R.; Merzaban, J. S.; Khashab, N. M. Cell-type-specific CRISPR/Cas9 delivery by biomimetic metal organic frameworks. J. Am. Chem. Soc. 2020, 142, 1715–1720.
Chu, C. C.; Su, M.; Zhu, J.; Li, D. S.; Cheng, H. W.; Chen, X. Y.; Liu, G. Metal-organic framework nanoparticle-based biomineralization: A new strategy toward cancer treatment. Theranostics 2019, 9, 3134–3149.
Morris, W.; Briley, W. E.; Auyeung, E.; Cabezas, M. D.; Mirkin, C. A. Nucleic acid-metal organic framework (MOF) nanoparticle conjugates. J. Am. Chem. Soc. 2014, 136, 7261–7264.
Wang, S. Z.; McGuirk, C. M.; Ross, M. B.; Wang, S. Y.; Chen, P. C.; Xing, H.; Liu, Y.; Mirkin, C. A. General and direct method for preparing oligonucleotide-functionalized metal-organic framework nanoparticles. J. Am. Chem. Soc. 2017, 139, 9827–9830.
Wang, S. Z.; Chen, Y. J.; Wang, S. Y.; Li, P.; Mirkin, C. A.; Farha, O. K. DNA-functionalized metal-organic framework nanoparticles for intracellular delivery of proteins. J. Am. Chem. Soc. 2019, 141, 2215–2219.
Wang, S. Z.; Park, S. S.; Buru, C. T.; Lin, H. X.; Chen, P. C.; Roth, E. W.; Farha, O. K.; Mirkin, C. A. Colloidal crystal engineering with metal-organic framework nanoparticles and DNA. Nat. Commun. 2020, 11, 2495.
Meng, H. M.; Hu, X. X.; Kong, G. Z.; Yang, C.; Fu, T.; Li, Z. H.; Zhang, X. B. Aptamer-functionalized nanoscale metal-organic frameworks for targeted photodynamic therapy. Theranostics 2018, 8, 4332–4344.
Liu, Y.; Hou, W. J.; Xia, L.; Cui, C.; Wan, S.; Jiang, Y.; Yang, Y.; Wu, Q.; Qiu, L. P.; Tan, W. H. ZrMOF nanoparticles as quenchers to conjugate DNA aptamers for target-induced bioimaging and photodynamic therapy. Chem. Sci. 2018, 9, 7505–7509.
Wang, Z. J.; Fu, Y.; Kang, Z. Z.; Liu, X. G.; Chen, N.; Wang, Q.; Tu, Y. Q.; Wang, L. H.; Song, S. P.; Ling, D. S. et al. Organelle-specific triggered release of immunostimulatory oligonucleotides from intrinsically coordinated DNA-metal-organic frameworks with soluble exoskeleton. J. Am. Chem. Soc. 2017, 139, 15784–15791.
Liu, B. W.; Huang, Z. C.; Liu, J. W. Polyvalent spherical nucleic acids for universal display of functional DNA with ultrahigh stability. Angew. Chem., Int. Ed. 2018, 57, 9439–9442.
He, C. B.; Lu, K. D.; Liu, D. M.; Lin, W. B. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc. 2014, 136, 5181–5184.
Li, Y. L.; Zhao, P. R.; Gong, T.; Wang, H.; Jiang, X. W.; Cheng, H.; Liu, Y. Y.; Wu, Y. L.; Bu, W. B. Redox dyshomeostasis strategy for hypoxic tumor therapy based on DNAzyme-loaded electrophilic ZIFs. Angew. Chem., Int. Ed. 2020, 59, 22537–22543.
Yu, K. H.; Wei, T. X.; Li, Z. J.; Li, J. Y.; Wang, Z. Y.; Dai, Z. H. Construction of molecular sensing and logic systems based on site-occupying effect-modulated MOF-DNA interaction. J. Am. Chem. Soc. 2020, 142, 21267–21271.
Yang, H. R.; Han, M.; Li, J.; Ke, H. F.; Kong, Y.; Wang, W. H.; Wang, L.; Ma, W. J.; Qiu, J. C.; Wang, X. W. et al. Delivery of miRNAs through metal-organic framework nanoparticles for assisting neural stem cell therapy for ischemic stroke. ACS Nano 2022, 16, 14503–14516.
Li, M. Y.; Wang, C. L.; Di, Z. H.; Li, H.; Zhang, J. F.; Xue, W. T.; Zhao, M. P.; Zhang, K.; Zhao, Y. L.; Li, L. L. Engineering multifunctional DNA hybrid nanospheres through coordination-driven self-assembly. Angew. Chem., Int. Ed. 2019, 58, 1350–1354.
Klasa, R. J.; Gillum, A. M.; Klem, R. E.; Frankel, S. R. Oblimersen Bcl-2 antisense: Facilitating apoptosis in anticancer treatment. Antisense Nucleic Acid Drug Dev. 2002, 12, 193–213.
Fesik, S. W. Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. Cancer 2005, 5, 876–885.
Kong, N.; Zhang, R. N.; Wu, G. W.; Sui, X. B.; Wang, J. Q.; Kim, N. Y.; Blake, S.; De, D. B.; Xie, T.; Cao, Y. H. et al. Intravesical delivery of KDM6A-mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer. Proc. Natl. Acad. Sci. USA 2022, 119, e2112696119.
Zhang, P. F.; Xiao, Y. F.; Sun, X.; Lin, X. N.; Koo, S.; Yaremenko, A. V.; Qin, D. T.; Kong, N.; Farokhzad, O. C.; Tao, W. Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects. Med 2023, 4, 147–167.
Park, J.; Jiang, Q.; Feng, D. W.; Mao, L. Q.; Zhou, H. C. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 2016, 138, 3518–3525.
Berg, K.; Selbo, P. K.; Prasmickaite, L.; Tjelle, T. E.; Sandvig, K.; Moan, D.; Gaudernack, G.; Fodstad, O.; Kjølsrud, S.; Anholt, H. et al. Photochemical internalization: A novel technology for delivery of macromolecules into cytosol. Cancer Res. 1999, 59, 1180–1183.