AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Engineering hierarchical metal-organic@metal-DNA heterostructures for combinational tumor treatment

Xueyan Feng1,2,§Bei Liu1,§Zehao Zhou1,§Wei Li3Jian Zhao1,2( )Lele Li1,2( )Yuliang Zhao1,2( )
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, Shanghai 200433, China

§ Xueyan Feng, Bei Liu, and Zehao Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

Hierarchical metal-organic@metal-DNA nanostructures are fabricated through self-assembly of DNA and metal ions on nanoscale metal-organic frameworks. The hetero-architectures enable enhanced anti-tumor efficacy through the integration of gene therapy and chemotherapy with photodynamic therapy.

Abstract

Development of simple methods for controlled integration of DNA molecules with metal-organic frameworks (MOFs) is important for various biomedical applications, yet remains a challenge. Herein, a simple and general approach to load DNA on the surface of MOFs is developed via one-pot self-assembly of DNA and FeII ions on nanoscale MOFs, resulting in hierarchical core-shell nanostructures of metal-organic@metal-DNA coordination polymers. The strategy enables assembly of DNA molecules on MOFs with ultra-high contents and precise controllability. By incorporation of a chemotherapeutic drug into the Fe-DNA shell, the systems allow to integrate chemotherapy and gene therapy with photodynamic therapy for combinational tumor treatment. Moreover, the hybrid nanostructures enable light-triggered production of cytotoxic singlet oxygen, which further boosts the endosomal escape of the system for an enhanced gene silencing efficacy and thus improved therapeutic outcome. This work highlights a robust approach for the construction of coordination-based drug delivery systems to combat tumor.

Electronic Supplementary Material

Download File(s)
12274_2023_5909_MOESM1_ESM.pdf (916.3 KB)

References

[1]

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

[2]

Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.

[3]

Zhou, H. C.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418.

[4]

Xiao, X.; Liang, S.; Zhao, Y. J.; Pang, M. L.; Ma, P. A.; Cheng, Z. Y.; Lin, J. Multifunctional carbon monoxide nanogenerator as immunogenic cell death drugs with enhanced antitumor immunity and antimetastatic effect. Biomaterials 2021, 277, 121120.

[5]

Zhuang, J.; Duan, Y. O.; Zhang, Q. Z.; Gao, W. W.; Li, S. L.; Fang, R. H.; Zhang, L. F. Multimodal enzyme delivery and therapy enabled by cell membrane-coated metal-organic framework nanoparticles. Nano Lett. 2020, 20, 4051–4058.

[6]

Xiao, Y. F.; Tang, Z. M.; Wang, J. Q.; Liu, C.; Kong, N.; Farokhzad, O. C.; Tao, W. Oral insulin delivery platforms: Strategies to address the biological barriers. Angew. Chem., Int. Ed. 2020, 59, 19787–19795.

[7]

Li, J. C.; Luo, Y.; Pu, K. Y. Electromagnetic nanomedicines for combinational cancer immunotherapy. Angew. Chem., Int. Ed. 2021, 60, 12682–12705.

[8]

Chen, T. T.; Yi, J. T.; Zhao, Y. Y.; Chu, X. Biomineralized metal-organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins. J. Am. Chem. Soc. 2018, 140, 9912–9920.

[9]

Zhao, H. X.; Shu, G.; Zhu, J. Y.; Fu, Y. Y.; Gu, Z.; Yang, D. Y. Persistent luminescent metal-organic frameworks with long-lasting near infrared emission for tumor site activated imaging and drug delivery. Biomaterials 2019, 217, 119332.

[10]

Li, Z. K.; Qiao, X.; He, G. H.; Sun, X.; Feng, D. H.; Hu, L. F.; Xu, H.; Xu, H. B.; Ma, S. Q.; Tian, J. Core-satellite metal-organic framework@upconversion nanoparticle superstructures via electrostatic self-assembly for efficient photodynamic theranostics. Nano Res. 2020, 13, 3377–3386.

[11]

Ouyang, J.; Xie, A.; Zhou, J.; Liu, R. C.; Wang, L. Q.; Liu, H. J.; Kong, N.; Tao, W. Minimally invasive nanomedicine: Nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem. Soc. Rev. 2022, 51, 4996–5041.

[12]

Yu, L.; Yu, M.; Chen, W.; Sun, S. J.; Huang, W. X.; Wang, T. Q.; Peng, Z. W.; Luo, Z. W.; Fang, Y. X.; Li, Y. J. et al. In situ separable nanovaccines with stealthy bioadhesive capability for durable cancer immunotherapy. J. Am. Chem. Soc. 2023, 145, 8375–8388.

[13]

Ji, X. Y.; Tang, Z. M.; Liu, H. J.; Kang, Y.; Chen, L. Q.; Dong, J. R.; Chen, W.; Kong, N.; Tao, W.; Xie, T. Nanoheterojunction-mediated thermoelectric strategy for cancer surgical adjuvant treatment and β-elemene combination therapy. Adv. Mater. 2023, 35, 2207391.

[14]

Zou, Z.; He, L. B.; Deng, X. X.; Wang, H. X.; Huang, Z. Y.; Xue, Q.; Qing, Z. H.; Lei, Y. L.; Yang, R. H.; Liu, J. W. Zn2+-coordination-driven RNA assembly with retained integrity and biological functions. Angew. Chem., Int. Ed. 2021, 60, 22970–22976.

[15]

Lin, G.; Zhang, Y.; Zhang, L.; Wang, J. Q.; Tian, Y.; Cai, W.; Tang, S. G.; Chu, C. C.; Zhou, J. J.; Mi, P. et al. Metal-organic frameworks nanoswitch: Toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference. Nano Res. 2020, 13, 238–245.

[16]

Ni, K. Y.; Luo, T. K.; Lan, G. X.; Culbert, A.; Song, Y.; Wu, T.; Jiang, X. M.; Lin, W. B. A nanoscale metal-organic framework to mediate photodynamic therapy and deliver CpG oligodeoxynucleotides to enhance antigen presentation and cancer immunotherapy. Angew. Chem., Int. Ed. 2020, 59, 1108–1112.

[17]

Peng, S.; Bie, B. L.; Sun, Y. Z. S.; Liu, M.; Cong, H. J.; Zhou, W. T.; Xia, Y. C.; Tang, H.; Deng, H. X.; Zhou, X. Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat. Commun. 2018, 9, 1293.

[18]

Zhuang, J.; Gong, H.; Zhou, J. R.; Zhang, Q. Z.; Gao, W. W.; Fang, R. H.; Zhang, L. F. Targeted gene silencing in vivo by platelet membrane-coated metal-organic framework nanoparticles. Sci. Adv. 2020, 6, eaaz6108.

[19]

Wang, Z.; Niu, J. S.; Zhao, C. Q.; Wang, X. H.; Ren, J. S.; Qu, X. G. A bimetallic metal-organic framework encapsulated with DNAzyme for intracellular drug synthesis and self-sufficient gene therapy. Angew. Chem., Int. Ed. 2021, 60, 12431–12437.

[20]

Wang, H. M.; Chen, Y. Q.; Wang, H.; Liu, X. Q.; Zhou, X.; Wang, F. DNAzyme-loaded metal-organic frameworks (MOFs) for self-sufficient gene therapy. Angew. Chem., Int. Ed. 2019, 58, 7380–7384.

[21]

Chen, X. J.; Tang, Q. Y.; Wang, J. Q.; Zhou, Y.; Li, F. Q.; Xie, Y. X.; Wang, X. G.; Du, L.; Li, J. R.; Pu, J. et al. A DNA/DMXAA/metal-organic framework activator of innate immunity for boosting anticancer immunity. Adv. Mater. 2023, 35, 2210440.

[22]

Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J. et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 2015, 6, 7240.

[23]

Li, Y. T.; Zhang, K.; Liu, P. R.; Chen, M.; Zhong, Y. L.; Ye, Q. S.; Wei, M. Q.; Zhao, H. J.; Tang, Z. Y. Encapsulation of plasmid DNA by nanoscale metal-organic frameworks for efficient gene transportation and expression. Adv. Mater. 2019, 31, 1901570.

[24]

Alyami, M. Z.; Alsaiari, S. K.; Li, Y. Y.; Qutub, S. S.; Aleisa, F. A.; Sougrat, R.; Merzaban, J. S.; Khashab, N. M. Cell-type-specific CRISPR/Cas9 delivery by biomimetic metal organic frameworks. J. Am. Chem. Soc. 2020, 142, 1715–1720.

[25]

Chu, C. C.; Su, M.; Zhu, J.; Li, D. S.; Cheng, H. W.; Chen, X. Y.; Liu, G. Metal-organic framework nanoparticle-based biomineralization: A new strategy toward cancer treatment. Theranostics 2019, 9, 3134–3149.

[26]

Morris, W.; Briley, W. E.; Auyeung, E.; Cabezas, M. D.; Mirkin, C. A. Nucleic acid-metal organic framework (MOF) nanoparticle conjugates. J. Am. Chem. Soc. 2014, 136, 7261–7264.

[27]

Wang, S. Z.; McGuirk, C. M.; Ross, M. B.; Wang, S. Y.; Chen, P. C.; Xing, H.; Liu, Y.; Mirkin, C. A. General and direct method for preparing oligonucleotide-functionalized metal-organic framework nanoparticles. J. Am. Chem. Soc. 2017, 139, 9827–9830.

[28]

Wang, S. Z.; Chen, Y. J.; Wang, S. Y.; Li, P.; Mirkin, C. A.; Farha, O. K. DNA-functionalized metal-organic framework nanoparticles for intracellular delivery of proteins. J. Am. Chem. Soc. 2019, 141, 2215–2219.

[29]

Wang, S. Z.; Park, S. S.; Buru, C. T.; Lin, H. X.; Chen, P. C.; Roth, E. W.; Farha, O. K.; Mirkin, C. A. Colloidal crystal engineering with metal-organic framework nanoparticles and DNA. Nat. Commun. 2020, 11, 2495.

[30]

Meng, H. M.; Hu, X. X.; Kong, G. Z.; Yang, C.; Fu, T.; Li, Z. H.; Zhang, X. B. Aptamer-functionalized nanoscale metal-organic frameworks for targeted photodynamic therapy. Theranostics 2018, 8, 4332–4344.

[31]

Liu, Y.; Hou, W. J.; Xia, L.; Cui, C.; Wan, S.; Jiang, Y.; Yang, Y.; Wu, Q.; Qiu, L. P.; Tan, W. H. ZrMOF nanoparticles as quenchers to conjugate DNA aptamers for target-induced bioimaging and photodynamic therapy. Chem. Sci. 2018, 9, 7505–7509.

[32]

Wang, Z. J.; Fu, Y.; Kang, Z. Z.; Liu, X. G.; Chen, N.; Wang, Q.; Tu, Y. Q.; Wang, L. H.; Song, S. P.; Ling, D. S. et al. Organelle-specific triggered release of immunostimulatory oligonucleotides from intrinsically coordinated DNA-metal-organic frameworks with soluble exoskeleton. J. Am. Chem. Soc. 2017, 139, 15784–15791.

[33]

Liu, B. W.; Huang, Z. C.; Liu, J. W. Polyvalent spherical nucleic acids for universal display of functional DNA with ultrahigh stability. Angew. Chem., Int. Ed. 2018, 57, 9439–9442.

[34]

He, C. B.; Lu, K. D.; Liu, D. M.; Lin, W. B. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc. 2014, 136, 5181–5184.

[35]

Li, Y. L.; Zhao, P. R.; Gong, T.; Wang, H.; Jiang, X. W.; Cheng, H.; Liu, Y. Y.; Wu, Y. L.; Bu, W. B. Redox dyshomeostasis strategy for hypoxic tumor therapy based on DNAzyme-loaded electrophilic ZIFs. Angew. Chem., Int. Ed. 2020, 59, 22537–22543.

[36]

Yu, K. H.; Wei, T. X.; Li, Z. J.; Li, J. Y.; Wang, Z. Y.; Dai, Z. H. Construction of molecular sensing and logic systems based on site-occupying effect-modulated MOF-DNA interaction. J. Am. Chem. Soc. 2020, 142, 21267–21271.

[37]

Yang, H. R.; Han, M.; Li, J.; Ke, H. F.; Kong, Y.; Wang, W. H.; Wang, L.; Ma, W. J.; Qiu, J. C.; Wang, X. W. et al. Delivery of miRNAs through metal-organic framework nanoparticles for assisting neural stem cell therapy for ischemic stroke. ACS Nano 2022, 16, 14503–14516.

[38]

Li, M. Y.; Wang, C. L.; Di, Z. H.; Li, H.; Zhang, J. F.; Xue, W. T.; Zhao, M. P.; Zhang, K.; Zhao, Y. L.; Li, L. L. Engineering multifunctional DNA hybrid nanospheres through coordination-driven self-assembly. Angew. Chem., Int. Ed. 2019, 58, 1350–1354.

[39]

Klasa, R. J.; Gillum, A. M.; Klem, R. E.; Frankel, S. R. Oblimersen Bcl-2 antisense: Facilitating apoptosis in anticancer treatment. Antisense Nucleic Acid Drug Dev. 2002, 12, 193–213.

[40]

Fesik, S. W. Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. Cancer 2005, 5, 876–885.

[41]

Kong, N.; Zhang, R. N.; Wu, G. W.; Sui, X. B.; Wang, J. Q.; Kim, N. Y.; Blake, S.; De, D. B.; Xie, T.; Cao, Y. H. et al. Intravesical delivery of KDM6A-mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer. Proc. Natl. Acad. Sci. USA 2022, 119, e2112696119.

[42]

Zhang, P. F.; Xiao, Y. F.; Sun, X.; Lin, X. N.; Koo, S.; Yaremenko, A. V.; Qin, D. T.; Kong, N.; Farokhzad, O. C.; Tao, W. Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects. Med 2023, 4, 147–167.

[43]

Park, J.; Jiang, Q.; Feng, D. W.; Mao, L. Q.; Zhou, H. C. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 2016, 138, 3518–3525.

[44]

Berg, K.; Selbo, P. K.; Prasmickaite, L.; Tjelle, T. E.; Sandvig, K.; Moan, D.; Gaudernack, G.; Fodstad, O.; Kjølsrud, S.; Anholt, H. et al. Photochemical internalization: A novel technology for delivery of macromolecules into cytosol. Cancer Res. 1999, 59, 1180–1183.

Nano Research
Pages 12633-12640
Cite this article:
Feng X, Liu B, Zhou Z, et al. Engineering hierarchical metal-organic@metal-DNA heterostructures for combinational tumor treatment. Nano Research, 2023, 16(11): 12633-12640. https://doi.org/10.1007/s12274-023-5909-2
Topics:

564

Views

5

Crossref

1

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 17 April 2023
Revised: 08 June 2023
Accepted: 09 June 2023
Published: 01 July 2023
© Tsinghua University Press 2023
Return