Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Rechargeable sodium-ion batteries (SIBs) are considered as the next-generation secondary batteries. The performance of SIB is determined by the behavior of its electrode surface and the electrode–electrolyte interface during charging and discharging. Thus, the characteristics of these surfaces and interfaces should be analyzed to realize large-scale energy storage systems with high energy density and long-cycle stability. Although various studies have investigated the properties of electrode materials, few studies have focused on the construction of stable and efficient SIB interfaces, and even fewer have explored the mechanisms of interfacial effects; however, the strategies of regulating interfacial effects are yet to be completely developed. Moreover, the results obtained thus far are insufficient to draw systematic conclusions. The present study reviews the literature on the mechanism of interfacial effects in Na+ storage devices. The interfaces in a sodium-ion storage device include a heterogeneous interface between electrode materials, a solid electrolyte interphase, and a cathode electrolyte interphase. The interfacial effects during the intercalation, transformation, and alloy reactions and the resulting overall battery performance were theoretically analyzed. In this review, we aim to provide a theoretical basis for optimizing the structures of electrode surface and electrode–electrolyte interface to optimize the performance of SIBs. In addition, the challenges of investigating interfacial effects and several possible helpful methods and opportunities for studying the mechanisms of interfacial effects in SIBs will be presented.
Quilty, C. D.; Wu, D. R.; Li, W. Z.; Bock, D. C.; Wang, L.; Housel, L. M.; Abraham, A.; Takeuchi, K. J.; Marschilok, A. C.; Takeuchi, E. S. Electron and ion transport in lithium and lithium-ion battery negative and positive composite electrodes. Chem. Rev. 2023, 123, 1327–1363.
Usiskin, R.; Maier, J. Interfacial effects in lithium and sodium batteries. Adv. Energy Mater. 2021, 11, 2001455.
Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.
Yang, C.; Xin, S.; Mai, L. Q.; You, Y. Materials design for high-safety sodium-ion battery. Adv. Energy Mater. 2021, 11, 2000974.
Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering Janus electrode for rechargeable Na-S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.
Zuo, W. H.; Innocenti, A.; Zarrabeitia, M.; Bresser, D.; Yang, Y.; Passerini, S. Layered oxide cathodes for sodium-ion batteries: Storage mechanism, electrochemistry, and techno-economics. Acc. Chem. Res. 2023, 56, 284–296.
Hao, Z. Q.; Shi, X. Y.; Yang, Z.; Li, L.; Chou, S. L. Developing high-performance metal selenides for sodium-ion batteries. Adv. Funct. Mater. 2022, 32, 2208093.
Hou, R. L.; Guo, S. H.; Zhou, H. S. Atomic insights into advances and issues in low-temperature electrolytes. Adv. Energy Mater. 2023, 13, 2300053.
Miao, Y.; Xiao, Y.; Hu, S. L.; Chen, S. M. Chalcogenides metal-based heterostructure anode materials toward Na+-storage application. Nano Res. 2023, 16, 2347–2365.
Sun, N.; Qiu, J. S.; Xu, B. Understanding of sodium storage mechanism in hard carbons: Ongoing development under debate. Adv. Energy Mater. 2022, 12, 2200715.
Ye, H. L.; Wang, L.; Deng, S.; Zeng, X. Q.; Nie, K. Q.; Duchesne, P. N.; Wang, B.; Liu, S.; Zhou, J. H.; Zhao, F. P. et al. Amorphous MoS3 infiltrated with carbon nanotubes as an advanced anode material of sodium-ion batteries with large gravimetric, areal, and volumetric capacities. Adv. Energy Mater. 2017, 7, 1601602.
Zhang, J. Y.; Gai, J. J.; Song, K. M.; Chen, W. H. Advances in electrode/electrolyte interphase for sodium-ion batteries from half cells to full cells. Cell Rep. Phys. Sci. 2022, 3, 100868.
Zhu, J. W.; Guo, Y.; Liu, F.; Xu, H. W.; Gong, L.; Shi, W. J.; Chen, D.; Wang, P. Y.; Yang, Y.; Zhang, C. T. et al. Regulative electronic states around ruthenium/ruthenium disulphide heterointerfaces for efficient water splitting in acidic media. Angew. Chem., Int. Ed. 2021, 60, 12328–12334.
Wei, Y. F.; Xia, H. C.; Yan, W. F.; Zhang, Z. N. Recent processing of interaction mechanisms of single metallic atom/clusters in energy electrocatalysis. Energy Mater. 2023, 3, 300033.
Xu, J. J.; Zhang, J. X.; Pollard, T. P.; Li, Q. D.; Tan, S.; Hou, S.; Wan, H. L.; Chen, F.; He, H. X.; Hu, E. Y. et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 2023, 614, 694–700.
Zhao, Y. S.; Liu, Q.; Zhao, X. H.; Mu, D. B.; Tan, G. Q.; Li, L.; Chen, R. J.; Wu, F. Structure evolution of layered transition metal oxide cathode materials for Na-ion batteries: Issues, mechanism and strategies. Mater. Today 2023, 62, 271–295.
Deng, J.; Gong, Q. F.; Ye, H. L.; Feng, K.; Zhou, J. H.; Zha, C.; Wu, J. H.; Chen, J. M.; Zhong, J.; Li, Y. G. Rational synthesis and assembly of Ni3S4 nanorods for enhanced electrochemical sodium-ion storage. ACS Nano 2018, 12, 1829–1836.
Liu, H. M.; Zeng, W. H.; Yang, Y.; Chen, J. X.; Zhao, Y. W.; Mu, S. C. Synchronously improved graphitization and surface area in a 3D porous carbon network as a high capacity anode material for lithium/sodium-ion batteries. J. Mater. Chem. A 2021, 9, 1260–1268.
Wang, Q.; Liao, Y. X.; Jin, X.; Cheng, C.; Chu, S. Y.; Sheng, C. C.; Zhang, L.; Hu, B. W.; Guo, S. H.; Zhou, H. S. Dual honeycomb-superlattice enables double-high activity and reversibility of anion redox for sodium-ion battery layered cathodes. Angew. Chem., Int. Ed. 2022, 61, e202206625.
Chu, S. Y.; Kim, D.; Choi, G.; Zhang, C. C.; Li, H. Y.; Pang, W. K.; Fan, Y. M.; D’Angelo, A. M.; Guo, S. H.; Zhou, H. S. Revealing the origin of transition-metal migration in layered sodium-ion battery cathodes: Random Na extraction and Na-free layer formation. Angew. Chem., Int. Ed. 2023, 62, e202216174.
Chen, D.; Lu, R. H.; Yu, R. H.; Dai, Y. H.; Zhao, H. Y.; Wu, D. L.; Wang, P. Y.; Zhu, J. W.; Pu, Z. H.; Chen, L. et al. Work-function-induced interfacial built-in electric fields in Os-OsSe2 heterostructures for active acidic and alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202208642.
Wang, K. F.; Sun, F.; Wang, H.; Wu, D. Y.; Chao, Y. X.; Gao, J. H.; Zhao, G. B. Altering thermal transformation pathway to create closed pores in coal-derived hard carbon and boosting of Na+ plateau storage for high-performance sodium-ion battery and sodium-ion capacitor. Adv. Funct. Mater. 2022, 32, 2203725.
Wang, P.; Guo, Y. J.; Chen, W. P.; Duan, H.; Ye, H.; Yao, H. R.; Yin, Y. X.; Cao, F. F. Self-supported hard carbon anode from fungus-treated basswood towards sodium-ion batteries. Nano Res. 2023, 16, 3832–3838.
Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806–1854.
Xia, Y.; Que, L. F.; Yu, F. D.; Deng, L.; Liang, Z. J.; Jiang, Y. S.; Sun, M. Y.; Zhao, L.; Wang, Z. B. Tailoring nitrogen terminals on MXene enables fast charging and stable cycling Na-ion batteries at low temperature. Nano-Micro Lett. 2022, 14, 143.
Xiao, Y. H.; Yue, F.; Wen, Z. Q.; Shen, Y.; Su, D. C.; Guo, H. Z.; Rui, X. H.; Zhou, L. M.; Fang, S. M.; Yu, Y. Elastic buffering layer on CuS enabling high-rate and long-life sodium-ion storage. Nano-Micro Lett. 2022, 14, 193.
Xue, S.; Shang, J.; Pu, X. H.; Cheng, H.; Zhang, L. J.; Wang, C. C.; Lee, C. S.; Tang, Y. B. Dual anionic doping strategy towards synergistic optimization of Co9S8 for fast and durable sodium storage. Energy Storage Mater. 2023, 55, 33–41.
Wen, P. C.; Lu, P. F.; Shi, X. Y.; Yao, Y.; Shi, H. D.; Liu, H. Q.; Yu, Y.; Wu, Z. S. Photopolymerized gel electrolyte with unprecedented room-temperature ionic conductivity for high-energy-density solid-state sodium metal batteries. Adv. Energy Mater. 2021, 11, 2002930.
Zhao, A. L.; Liu, C. Y.; Ji, F. J.; Zhang, S. H.; Fan, H. M.; Ni, W. H.; Fang, Y. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Revealing the phase evolution in Na4FexP4O12+x (2 ≤ x ≤ 4) cathode materials. ACS Energy Lett. 2023, 8, 753–761.
Liang, Z. T.; Xiang, Y. X.; Wang, K. J.; Zhu, J. P.; Jin, Y. T.; Wang, H. C.; Zheng, B. Z.; Chen, Z. R.; Tao, M. M.; Liu, X. S. et al. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Nat. Commun. 2023, 14, 259.
Pu, B.; Liu, Y.; Bai, J.; Chu, X.; Zhou, X. F.; Qing, Y.; Wang, Y. B.; Zhang, M. Z.; Ma, Q. S.; Xu, Z. et al. Iodine-ion-assisted galvanic replacement synthesis of bismuth nanotubes for ultrafast and ultrastable sodium storage. ACS Nano 2022, 16, 18746–18756.
Qin, D. C.; Wang, L.; Zeng, X. X.; Shen, J.; Huang, F.; Xu, G. Y.; Zhu, M. F.; Dai, Z. H. Tailored edge-heteroatom tri-doping strategy of turbostratic carbon anodes for high-rate performance lithium and sodium-ion batteries. Energy Storage Mater. 2023, 54, 498–507.
Song, P.; Wei, S. Q.; Di, J.; Du, J.; Xu, W. J.; Liu, D. B.; Wang, C. D.; Qiao, S. C.; Cao, Y. Y.; Cui, Q. L. et al. Biomass-derived hard carbon microtubes with tunable apertures for high-performance sodium-ion batteries. Nano Res. 2023, 16, 4874–4879.
Tang, L.; Meng, X. G.; Deng, D. H.; Bao, X. H. Confinement catalysis with 2D materials for energy conversion. Adv. Mater. 2019, 31, 1901996.
Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.
Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p–n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.
Li, X.; Guan, Q. H.; Zhuang, Z. C.; Zhang, Y. Z.; Lin, Y. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, Y. L.; Zhan, L. et al. Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li-S battery. ACS Nano 2023, 17, 1653–1662.
Meng, W. J.; Dang, Z. Z.; Li, D. S.; Jiang, L.; Fang, D. N. Efficient sodium storage in selenium electrodes achieved by selenium doping and copper current collector induced displacement redox mechanisms. Adv. Funct. Mater. 2022, 32, 2204364.
Osman, S.; Peng, C.; Shen, J. D.; Li, F. K.; Huang, W. J.; Liu, J.; Liu, J. W.; Xue, D. F.; Zhu, M. Boosting fast and stable symmetric sodium-ion storage by synergistic engineering and amorphous structure. Nano Energy 2022, 100, 107481.
Pan, X. N.; Xi, B. J.; Lu, H. B.; Zhang, Z. C. Y.; An, X. G.; Liu, J.; Feng, J. K.; Xiong, S. L. Molybdenum oxynitride atomic nanoclusters bonded in nanosheets of N-doped carbon hierarchical microspheres for efficient sodium storage. Nano-Micro Lett. 2022, 14, 163.
Peng, B. X.; Lv, Z. R.; Xu, S. M.; Pan, J.; Zhao, W.; Dong, C. L.; Huang, F. Q. Tailoring ultrafast and high-capacity sodium storage via binding-energy-driven atomic scissors. Adv. Mater. 2022, 34, 2200863.
Li, J. B.; Chang, X. Q.; Huang, T. Y.; Wang, B. H.; Zheng, H. F.; Luo, Q.; Peng, D. L.; Wei, Q. L. Surface-controlled sodium-ion storage mechanism of Li4Ti5O12 anode. Energy Storage Mater. 2023, 54, 724–731.
Liang, S. Z.; Wang, X. Y.; Qi, R. X.; Cheng, Y. J.; Xia, Y. G.; Müller-Buschbaum, P.; Hu, X. L. Bronze-phase TiO2 as anode materials in lithium and sodium-ion batteries. Adv. Funct. Mater. 2022, 32, 2201675.
Liu, B. L.; Wang, L. Q.; Zhu, Y. Q.; Peng, H.; Du, C. L.; Yang, X. Y.; Zhao, Q. Q.; Hou, J. H.; Cao, C. B. Ammonium-modified synthesis of vanadium sulfide nanosheet assemblies toward high sodium storage. ACS Nano 2022, 16, 12900–12909.
Lv, Z. R.; Peng, B. X.; Lv, X. M.; Gao, Y. S.; Hu, K. Y.; Dong, W. J.; Zheng, G. F.; Huang, F. Q. Intercalative motifs-induced space confinement and bonding covalency enhancement enable ultrafast and large sodium storage. Adv. Funct. Mater. 2023, 33, 2214370.
Meng, W. J.; Dang, Z. Z.; Li, D. S.; Jiang, L.; Fang, D. N. Interface and defect engineered titanium-base oxide heterostructures synchronizing high-rate and ultrastable sodium storage. Adv. Energy Mater. 2022, 12, 2201531.
Huang, S.; Yang, D. J.; Qiu, X. Q.; Zhang, W. L.; Qin, Y. L.; Wang, C. W.; Yi, C. H. Boosting surface-dominated sodium storage of carbon anode enabled by coupling graphene nanodomains, nitrogen-doping, and nanoarchitecture engineering. Adv. Funct. Mater. 2022, 32, 2203279.
Jin, J. T.; Liu, Y. C.; Zhao, X. D.; Liu, H.; Deng, S. Q.; Shen, Q. Y.; Hou, Y.; Qi, H.; Xing, X. R.; Jiao, L. F. et al. Annealing in argon universally upgrades the Na-storage performance of Mn-based layered oxide cathodes by creating bulk oxygen vacancies. Angew. Chem., Int. Ed. 2023, 62, e202219230.
Lee, M.; Kim, M. S.; Oh, J. M.; Park, J. K.; Paek, S. M. Hybridization of layered titanium oxides and covalent organic nanosheets into hollow spheres for high-performance sodium-ion batteries with boosted electrical/ionic conductivity and ultralong cycle life. ACS Nano 2023, 17, 3019–3036.
Hu, X. W.; Zhang, Q. C.; Gong, N.; Chen, X. F.; Wang, L.; Peng, W. C.; Li, Y.; Zhang, F. B.; Fan, X. B. Remove the –F terminal groups on Ti3C2Tx by reaction with sodium metal to enhance pseudocapacitance. Energy Storage Mater. 2022, 50, 802–809.
Huang, P. F.; Ying, H. J.; Zhang, S. L.; Zhang, Z.; Han, W. Q. Molten salts etching route driven universal construction of MXene/transition metal sulfides heterostructures with interfacial electronic coupling for superior sodium storage. Adv. Energy Mater. 2022, 12, 2202052.
Liang, X. H.; Yu, T. Y.; Ryu, H. H.; Sun, Y. K. Hierarchical O3/P2 heterostructured cathode materials for advanced sodium-ion batteries. Energy Storage Mater. 2022, 47, 515–525.
Chen, M. Z.; Zhou, L. M.; Wang, T.; Xia, H.; Liu, H. K.; Dou, S. X.; Chou, S. L. Nitrogen as an anionic center/dopant for next-generation high-performance lithium/sodium-ion battery electrodes: Key scientific issues, challenges and perspectives. Adv. Funct. Mater. 2023, 33, 2214786.
Zhao, A. L.; Yuan, T. C.; Li, P.; Liu, C. Y.; Cong, H. J.; Pu, X. J.; Chen, Z. X.; Ai, X. P.; Yang, H. X.; Cao, Y. L. A novel Fe-defect induced pure-phase Na4Fe2.91(PO4)2P2O7 cathode material with high capacity and ultra-long lifetime for low-cost sodium-ion batteries. Nano Energy 2022, 91, 106680.
Lu, S. Y.; Wu, H.; Hou, J. W.; Liu, L. M.; Li, J.; Harris, C. J.; Lao, C. Y.; Guo, Y. Z.; Xi, K.; Ding, S. J. et al. Phase boundary engineering of metal-organic-framework-derived carbonaceous nickel selenides for sodium-ion batteries. Nano Res. 2020, 13, 2289–2298.
Yun, Q. B.; Li, L. X.; Hu, Z. N.; Lu, Q. P.; Chen, B.; Zhang, H. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Adv. Mater. 2020, 32, 1903826.
Xiao, Y.; Lee, S. H.; Sun, Y. K. The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 2017, 7, 1601329.
Cheng, J. Y.; Niu, Z. L.; Zhao, Z. P.; Pei, X. D.; Zhang, S.; Wang, H. Q.; Li, D.; Guo, Z. P. Enhanced ion/electron migration and sodium storage driven by different MoS2-ZnIn2S4 heterointerfaces. Adv. Energy Mater. 2023, 13, 2203248.
Xia, H. C.; Zan, L. X.; Yuan, P. F.; Qu, G.; Dong, H. L.; Wei, Y. F.; Yu, Y.; Wei, Z. Y.; Yan, W. F.; Hu, J. S. et al. Evolution of stabilized 1T-MoS2 by atomic-interface engineering of 2H-MoS2/Fe-Nx towards enhanced sodium ion storage. Angew. Chem., Int. Ed. 2023, 62, e202218282.
Dong, C. F.; Shao, H. J.; Zhou, Y. L.; Du, W.; Li, L.; Sun, J. C.; Yan, Z. H.; Hu, Z.; Chou, S. L.; Jiang, F. Y. Construction of ZnS/Sb2S3 heterojunction as an ion-transport booster toward high-performance sodium storage. Adv. Funct. Mater. 2023, 33, 2211864.
Xiao, S. H.; Li, X. Y.; Zhang, W. S.; Xiang, Y.; Li, T. S.; Niu, X. B.; Chen, J. S.; Yan, Q. Y. Bilateral interfaces in In2Se3-CoIn2-CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano 2021, 15, 13307–13318.
Zheng, S. H.; Huang, H. J.; Dong, Y. F.; Wang, S.; Zhou, F.; Qin, J. Q.; Sun, C. L.; Yu, Y.; Wu, Z. S.; Bao, X. H. Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. Energy Environ. Sci. 2020, 13, 821–829.
Wang, E. H.; Wan, J.; Guo, Y. J.; Zhang, Q. Y.; He, W. H.; Zhang, C. H.; Chen, W. P.; Yan, H. J.; Xue, D. J.; Fang, T. T. et al. Mitigating electron leakage of solid electrolyte interface for stable sodium-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202216354.
Li, Y. Q.; Zhou, Q.; Weng, S. T.; Ding, F. X.; Qi, X. G.; Lu, J. Z.; Li, Y.; Zhang, X.; Rong, X. H.; Lu, Y. X. et al. Interfacial engineering to achieve an energy density of over 200 Wh·kg−1 in sodium batteries. Nat. Energy 2022, 7, 511–519.
Liu, M.; Ao, H.; Jin, Y.; Hou, Z.; Zhang, X.; Zhu, Y.; Qian, Y. Aqueous rechargeable sodium ion batteries: Developments and prospects. Mater. Today Energy 2020, 17, 100432.
Mu, L. Q.; Feng, X.; Kou, R. H.; Zhang, Y.; Guo, H.; Tian, C. X.; Sun, C. J.; Du, X. W.; Nordlund, D.; Xin, H. L. et al. Deciphering the cathode–electrolyte interfacial chemistry in sodium layered cathode materials. Adv. Energy Mater. 2018, 8, 1801975.
Xia, H. C.; Zan, L. X.; Qu, G.; Tu, Y. C.; Dong, H. L.; Wei, Y. F.; Zhu, K. X.; Yu, Y.; Hu, Y. F.; Deng, D. H. et al. Evolution of a solid electrolyte interphase enabled by FeNx/C catalysts for sodium-ion storage. Energy Environ. Sci. 2022, 15, 771–779.
Yang, M.; Chang, X. Q.; Wang, L. Q.; Wang, X. Y.; Gu, M. Y.; Huang, H.; Tang, L. Y.; Zhong, Y. R.; Xia, H. Interface modulation of metal sulfide anodes for long-cycle-life sodium-ion batteries. Adv. Mater. 2023, 35, 2208705.
Tang, Z.; Wang, H.; Wu, P. F.; Zhou, S. Y.; Huang, Y. C.; Zhang, R.; Sun, D.; Tang, Y. G.; Wang, H. Y. Electrode–electrolyte interfacial chemistry modulation for ultra-high rate sodium-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202200475.
Lu, Z. Y.; Geng, C. N.; Yang, H. J.; He, P.; Wu, S. C.; Yang, Q. H.; Zhou, H. S. Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes. Proc. Natl. Acad. Sci. USA 2022, 119, e2210203119.
Fan, J. J.; Dai, P.; Shi, C. G.; Wen, Y. F.; Luo, C. X.; Yang, J.; Song, C.; Huang, L.; Sun, S. G. Synergistic dual-additive electrolyte for interphase modification to boost cyclability of layered cathode for sodium ion batteries. Adv. Funct. Mater. 2021, 31, 2010500.
Gbadamasi, S.; Mohiuddin, M.; Krishnamurthi, V.; Verma, R.; Khan, M. W.; Pathak, S.; Kalantar-Zadeh, K.; Mahmood, N. Interface chemistry of two-dimensional heterostructures-fundamentals to applications. Chem. Soc. Rev. 2021, 50, 4684–4729.
Yang, Z.; He, J.; Lai, W. H.; Peng, J.; Liu, X. H.; He, X. X.; Guo, X. F.; Li, L.; Qiao, Y.; Ma, J. M. et al. Fire-retardant, stable-cycling and high-safety sodium ion battery. Angew. Chem., Int. Ed. 2021, 60, 27086–27094.
Niu, Y. B.; Guo, Y. J.; Yin, Y. X.; Zhang, S. Y.; Wang, T.; Wang, P.; Xin, S.; Guo, Y. G. High-efficiency cathode sodium compensation for sodium-ion batteries. Adv. Mater. 2020, 32, 2001419.
Peng, J.; Zhang, W.; Hu, Z.; Zhao, L. F.; Wu, C.; Peleckis, G.; Gu, Q. F.; Wang, J. Z.; Liu, H. K.; Dou, S. X. et al. Ice-assisted synthesis of highly crystallized Prussian blue analogues for all-climate and long-calendar-life sodium ion batteries. Nano Lett. 2022, 22, 1302–1310.
Niu, Y. B.; Yin, Y. X.; Wang, W. P.; Wang, P. F.; Ling, W.; Xiao, Y.; Guo, Y. G. In situ copolymerizated gel polymer electrolyte with cross-linked network for sodium-ion batteries. CCS Chem. 2020, 2, 589–597.
Chen, H.; Sun, N.; Wang, Y. X.; Soomro, R. A.; Xu, B. One stone two birds: Pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium-ion batteries. Energy Storage Mater. 2023, 56, 532–541.
Hu, X.; Qiu, M.; Liu, Y. J.; Yuan, J.; Chen, J. X.; Zhan, H. B.; Wen, Z. H. Interface and structure engineering of tin-based chalcogenide anodes for durable and fast-charging sodium ion batteries. Adv. Energy Mater. 2022, 12, 2202318.
Lyu, F. C.; Jia, Z.; Zeng, S. S.; Ma, F. X.; Pan, L. L.; Cheng, L. Z.; Bao, Y.; Sun, L. G.; Ou, W. H.; Du, P. et al. Tunable ultrathin dual-phase P-doped Bi2MoO6 nanosheets for advanced lithium and sodium storage. Nano Res. 2022, 15, 6128–6137.
Xia, H. C.; Yuan, P. F.; Zan, L. X.; Qu, G.; Tu, Y. C.; Zhu, K. X.; Wei, Y. F.; Wei, Z. Y.; Zheng, F. Y.; Zhang, M. et al. Probing the active sites of 2D nanosheets with Fe-N-C carbon shell encapsulated FexC/Fe species for boosting sodium-ion storage performances. Nano Res. 2022, 15, 7154–7162.
Jing, L. Y.; Sun, J. W.; Sun, C. Y.; Wu, D.; Lian, G.; Cui, D. L.; Wang, Q. L.; Yu, H. H. MoS2-intercalated carbon hetero-layers bonded on graphene as electrode materials for enhanced sodium/potassium ion storage. Nano Res. 2023, 16, 473–480.
Yin, J. Y.; Hai, P. Q.; Gao, Y.; Gan, Z. H.; Wu, C.; Cheng, Y. H.; Xu, X. Theory-driven designed TiO2@MoO2 heterojunction: Balanced crystallinity and nanostructure toward desirable kinetics and high-rate sodium-ion storage. Nano Res. 2023, 16, 4941–4949.
Song, M. X.; Yi, Z. L.; Xu, R.; Chen, J. P.; Cheng, J. Y.; Wang, Z. F.; Liu, Q. L.; Guo, Q. G.; Xie, L. J.; Chen, C. M. Towards enhanced sodium storage of hard carbon anodes: Regulating the oxygen content in precursor by low-temperature hydrogen reduction. Energy Storage Mater. 2022, 51, 620–629.
Song, K. M.; Wang, X.; Xie, Z. K.; Zhao, Z. W.; Fang, Z.; Zhang, Z. F.; Luo, J.; Yan, P. F.; Peng, Z. Q.; Chen, W. H. Ultrathin CuF2-rich solid–electrolyte interphase induced by cation-tailored double electrical layer toward durable sodium storage. Angew. Chem., Int. Ed. 2023, 62, e202216450.
Wang, C.; Li, B. H.; Shen, W. C.; Kang, F. Y.; Huang, Z. H.; Lv, R. T. Unveiling the effects of Cr single atoms with controllable configurations on solid electrolyte interphase and storage mechanism of sodium ions. Adv. Funct. Mater. 2023, 33, 2214429.
Zhang, J. Y.; Song, K. M.; Mi, L. W.; Liu, C. T.; Feng, X. M.; Zhang, J. M.; Chen, W. H.; Shen, C. Y. Bimetal synergistic effect induced high reversibility of conversion-type Ni@NiCo2S4 as a free-standing anode for sodium ion batteries. J. Phys. Chem. Lett. 2020, 11, 1435–1442.
Sang, J. W.; Zhang, X. D.; Liu, K. L.; Cao, G. Q.; Guo, R. X.; Zhang, S. J.; Wu, Z. H.; Zhang, Y. S.; Hou, R. H.; Shen, Y. L. et al. Effective coupling of amorphous selenium phosphide with high-conductivity graphene as resilient high-capacity anode for sodium-ion batteries. Adv. Funct. Mater. 2023, 33, 2211640.
Liu, T.; Yang, Y.; Cao, S. W.; Xiang, R. H.; Zhang, L. Y.; Yu, J. G. Pore perforation of graphene coupled with in situ growth of Co3Se4 for high-performance Na-ion battery. Adv. Mater. 2023, 35, 2207752.
Wang, C. H.; Wang, D.; Ma, X.; Qin, H. Z.; Liu, M. K.; Yan, Y.; Zhang, B.; Ou, X. Isotropy-induced stress relaxation and strong-tolerance for high-rate and long-duration sodium storage by amorphous structure engineering. Adv. Funct. Mater. 2022, 32, 2204687.
Chen, M.; Xiao, P.; Yang, K.; Dong, B. X.; Xu, D.; Yan, C. Y.; Liu, X. J.; Zai, J. T.; Low, C. J.; Qian, X. F. Sn anodes protected by intermetallic FeSn2 layers for long-lifespan sodium-ion batteries with high initial coulombic efficiency of 93.8%. Angew. Chem., Int. Ed. 2023, 62, e202219177.
Liu, Z. M.; Sun, H. R.; Wang, X. J.; Gu, Z. Y.; Xu, C. M.; Li, H. F.; Zhang, G. X.; He, Y.; Wu, X. L. Tetrafunctional template-assisted strategy to preciously construct co-doped Sb@C nanofiber with longitudinal tunnels for ultralong-life and high-rate sodium storage. Energy Storage Mater. 2022, 48, 90–100.
Lu, H. Y.; Chen, X. Y.; Jia, Y. L.; Chen, H.; Wang, Y. X.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Engineering Al2O3 atomic layer deposition: Enhanced hard carbon–electrolyte interface towards practical sodium ion batteries. Nano Energy 2019, 64, 103903.
Zuo, W. H.; Liu, X. S.; Qiu, J. M.; Zhang, D. X.; Xiao, Z. M.; Xie, J. S.; Ren, F. C.; Wang, J. M.; Li, Y. X.; Ortiz, G. F. et al. Engineering Na+-layer spacings to stabilize Mn-based layered cathodes for sodium-ion batteries. Nat. Commun. 2021, 12, 4903.
Wang, J. W.; Liu, X. H.; Mao, S. X.; Huang, J. Y. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012, 12, 5897–5902.
Liang, Y. Z.; Song, N.; Zhang, Z. C. Y.; Chen, W. H.; Feng, J. K.; Xi, B. J.; Xiong, S. L. Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage. Adv. Mater. 2022, 34, 2202673.
Zhu, J.; Deng, D. Amorphous bimetallic Co3Sn2 nanoalloys are better than crystalline counterparts for sodium storage. J. Phys. Chem. C 2015, 119, 21323–21328.
Liu, Y.; Qing, Y.; Zhou, B.; Wang, L. D.; Pu, B.; Zhou, X. F.; Wang, Y. B.; Zhang, M. Z.; Bai, J.; Tang, Q. et al. Yolk–shell Sb@void@graphdiyne nanoboxes for high-rate and long cycle life sodium-ion batteries. ACS Nano 2023, 17, 2431–2439.
Tan, M. D.; Han, S. H.; Li, Z. B.; Cui, H.; Lei, D. N.; Wang, C. X. Compact Sn/C composite realizes long-life sodium-ion batteries. Nano Res. 2023, 16, 3804–3813.
Ma, J. X.; Zheng, S. H.; Chi, L. P.; Liu, Y.; Zhang, Y.; Wang, K.; Wu, Z. S. 3D printing flexible sodium-ion microbatteries with ultrahigh areal capacity and robust rate capability. Adv. Mater. 2022, 34, 2205569.
Liu, X. S.; Zhong, G. M.; Xiao, Z. M.; Zheng, B. Z.; Zuo, W. H.; Zhou, K.; Liu, H. D.; Liang, Z. T.; Xiang, Y. X.; Chen, Z. R. et al. Al and Fe-containing Mn-based layered cathode with controlled vacancies for high-rate sodium ion batteries. Nano Energy 2020, 76, 104997.
Hu, W. X.; Peng, Y. F.; Wei, Y. M.; Yang, Y. Application of electrochemical impedance spectroscopy to degradation and aging research of lithium-ion batteries. J. Phys. Chem. C 2023, 127, 4465–4495.
Peng, J.; Zhang, B.; Hua, W. B.; Liang, Y. R.; Zhang, W.; Du, Y. M.; Peleckis, G.; Indris, S.; Gu, Q. F.; Cheng, Z. X. et al. A disordered Rubik’s cube-inspired framework for sodium-ion batteries with ultralong cycle lifespan. Angew. Chem., Int. Ed. 2023, 62, e202215865.