Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Although anti-cancer nanotherapeutics have made breakthroughs, many remain clinically unsatisfactory due to limited delivery efficiency and complicated biological barriers. Here, we prepared charge-reversible crosslinked nanoparticles (PDC NPs) by supramolecular self-assembly of pro-apoptotic peptides and photosensitizers, followed by crosslinking the self-assemblies with polyethylene glycol to impart tumor microenvironment responsiveness and charge-reversibility. The resultant PDC NPs have a high drug loading of 68.3%, substantially exceeding that of 10%–15% in conventional drug delivery systems. PDC NPs can overcome the delivery hurdles to significantly improve the tumor accumulation and endocytosis of payloads by surface charge reversal and responsive crosslinking strategy. Pro-apoptotic peptides target the mitochondrial membranes and block the respiratory effect to reduce local oxygen consumption, which extensively augments oxygen-dependent photodynamic therapy (PDT). The photosensitizers around mitochondria increased along with the peptides, allowing PDT to work with pro-apoptotic peptides synergistically to induce tumor cell death by mitochondria-dependent apoptotic pathways. Our strategy would provide a valuable reference for improving the delivery efficiency of hydrophilic peptides and developing mitochondrial-targeting cancer therapies.
Acar, H.; Ting, J. M.; Srivastava, S.; LaBelle, J. L.; Tirrell, M. V. Molecular engineering solutions for therapeutic peptide delivery. Chem. Soc. Rev. 2017, 46, 6553–6569.
Niu, Z. G.; Conejos-Sánchez, I.; Griffin, B. T.; O’Driscoll, C. M.; Alonso, M. J. Lipid-based nanocarriers for oral peptide delivery. Adv. Drug Delivery Rev. 2016, 106, 337–354.
Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113.
Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760.
Zhang, M. J.; Shao, W. X.; Yang, T. R.; Liu, H. L.; Guo, S.; Zhao, D. Y.; Weng, Y. H.; Liang, X. J.; Huang, Y. Y. Conscription of immune cells by light-activatable silencing NK-derived exosome (LASNEO) for synergetic tumor eradication. Adv. Sci. 2022, 9, 2201135.
Sun, Q. H.; Zhou, Z. X.; Qiu, N. S.; Shen, Y. Q. Rational design of cancer nanomedicine: Nanoproperty integration and synchronization. Adv. Mater. 2017, 29, 1606628.
Ding, Y. Y.; Wang, Y. X.; Hu, Q. Y. Recent advances in overcoming barriers to cell-based delivery systems for cancer immunotherapy. Exploration 2022, 2, 20210106.
Moghimi, S. M.; Szebeni, J. Stealth liposomes and long circulating nanoparticles: Critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 2003, 42, 463–478.
Owens III, D. E.; Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006, 307, 93–102.
Guan, X. W.; Guo, Z. P.; Lin, L.; Chen, J.; Tian, H. Y.; Chen, X. S. Ultrasensitive pH triggered charge/size dual-rebound gene delivery system. Nano Lett. 2016, 16, 6823–6831.
Li, L. M.; Lindstrom, A. R.; Birkeland, A. C.; Tang, M. H.; Lin, T. Y.; Zhou, Y. K.; Xiang, B.; Xue, X. D.; Li, Y. P. Deep tumor-penetrating nano-delivery strategy to improve diagnosis and therapy in patient-derived xenograft (PDX) oral cancer model and patient tissue. Nano Res. 2023, 16, 2927–2937.
Xue, X. D.; Huang, Y.; Bo, R. N.; Jia, B.; Wu, H.; Yuan, Y.; Wang, Z. L.; Ma, Z.; Jing, D.; Xu, X. B. et al. Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment. Nat. Commun. 2018, 9, 3653.
Xue, X. D.; Qu, H. J.; Bo, R. N.; Zhang, D. L.; Zhu, Z.; Xiang, B.; Li, L. M.; Ricci, M.; Pan, C. X.; Lin, T. Y. et al. A transformable nanoplatform with multiple therapeutic and immunostimulatory properties for treatment of advanced cancers. Biomaterials 2023, 299, 122145.
Chen, S.; Rong, L.; Lei, Q.; Cao, P. X.; Qin, S. Y.; Zheng, D. W.; Jia, H. Z.; Zhu, J. Y.; Cheng, S. X.; Zhuo, R. X. et al. A surface charge-switchable and folate modified system for co-delivery of proapoptosis peptide and p53 plasmid in cancer therapy. Biomaterials 2016, 77, 149–163.
Muttenthaler, M.; King, G. F.; Adams, D. J.; Alewood, P. F. Trends in peptide drug discovery. Nat. Rev. Drug Discovery 2021, 20, 309–325.
Zhu, W. J.; Yang, Y.; Jin, Q. T.; Chao, Y.; Tian, L. L.; Liu, J. J.; Dong, Z. L.; Liu, Z. Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy. Nano Res. 2019, 12, 1307–1312.
Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.
Ellerby, H. M.; Arap, W.; Ellerby, L. M.; Kain, R.; Andrusiak, R.; Del Rio, G.; Krajewski, S.; Lombardo, C. R.; Rao, R.; Ruoslahti, E. et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat. Med. 1999, 5, 1032–1038.
Javadpour, M. M.; Juban, M. M.; Lo, W. C. J.; Bishop, S. M.; Alberty, J. B.; Cowell, S. M.; Becker, C. L.; McLaughlin, M. L. De novo antimicrobial peptides with low mammalian cell toxicity. J. Med. Chem. 1996, 39, 3107–3113.
Yan, J. Q.; Chen, J.; Zhang, N.; Yang, Y. D.; Zhu, W. W.; Li, L.; He, B. Mitochondria-targeted tetrahedral DNA nanostructures for doxorubicin delivery and enhancement of apoptosis. J. Mater. Chem. B 2020, 8, 492–503.
Wang, D. M.; Chen, L.; Wang, M. Y.; Cui, M. Y.; Huang, L. L.; Xia, W.; Guan, X. G. Delivering proapoptotic peptide by HSP nanocage for cancer therapy. Macromol. Chem. Phys. 2020, 221, 2000003.
An, H. W.; Mamuti, M.; Wang, X. F.; Yao, H. D.; Wang, M. D.; Zhao, L. N.; Li, L. L. Rationally designed modular drug delivery platform based on intracellular peptide self-assembly. Exploration 2021, 1, 20210153.
Levin, A.; Hakala, T. A.; Schnaider, L.; Bernardes, G. J. L.; Gazit, E.; Knowles, T. P. J. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 2020, 4, 615–634.
Xue, X. D.; Huang, Y.; Wang, X. S.; Wang, Z. L.; Carney, R. P.; Li, X. C.; Yuan, Y.; He, Y. X.; Lin, T. Y.; Li, Y. P. Self-indicating, fully active pharmaceutical ingredients nanoparticles (FAPIN) for multimodal imaging guided trimodality cancer therapy. Biomaterials 2018, 161, 203–215.
Xue, X. D.; Zhao, Y. Y.; Dai, L. R.; Zhang, X.; Hao, X. H.; Zhang, C. Q.; Huo, S. D.; Liu, J.; Liu, C.; Kumar, A. et al. Spatiotemporal drug release visualized through a drug delivery system with tunable aggregation-induced emission. Adv. Mater. 2014, 26, 712–717.
Liang, Y. S.; Zhi, S.; Qiao, Z. X.; Meng, F. C. Predicting blood-brain barrier permeation of erlotinib and JCN037 by molecular simulation. J. Membr. Biol. 2023, 256, 147–157.
Xue, X. D.; Qu, H. J.; Li, Y. P. Stimuli-responsive crosslinked nanomedicine for cancer treatment. Exploration 2022, 2, 20210134.
Qu, H. J.; Chen, H.; Cheng, W.; Wang, Y. J.; Xia, Y. Y.; Zhang, L. H.; Ma, B. Y.; Hu, R.; Xue, X. D. A supramolecular assembly strategy for hydrophilic drug delivery towards synergistic cancer treatment. Acta Biomater. 2023, 164, 407–421.
Zhang, X. L.; Zhang, C. N.; Cheng, M. B.; Zhang, Y. H.; Wang, W.; Yuan, Z. Dual pH-responsive “charge-reversal like” gold nanoparticles to enhance tumor retention for chemo-radiotherapy. Nano Res. 2019, 12, 2815–2826.
Lu, M.; Xing, H. N.; Shao, W. X.; Zhang, T.; Zhang, M. J.; Wang, Y. C.; Li, F. Z.; Weng, Y. H.; Zheng, A. P.; Huang, Y. Y. et al. Photoactivatable silencing extracellular vesicle (PASEV) sensitizes cancer immunotherapy. Adv. Mater. 2022, 34, 2204765.