AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Suppressing the lattice oxygen diffusion via high-entropy oxide construction towards stabilized acidic water oxidation

Jing Ni1,2Zhaoping Shi1,2Yibo Wang1,2Jiahao Yang1,2Hongxiang Wu1,2Pengbo Wang1,2Kai Li3Meiling Xiao1,2( )Changpeng Liu1,2( )Wei Xing1,2( )
State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Show Author Information

Graphical Abstract

We strategically regulate the bonding nature of Ru–O towards suppressed lattice-oxygen-mediated mechanism (LOM) via construction of the Ru-based high-entropy oxide (HEO) with increased migration energy barrier of lattice oxygen. The screened Ti23Nb9Hf13W12Ru43Ox thus exhibits 11.7 times slower lattice oxygen diffusion rate, 84% reduction in LOM ratio, and 29 times lifespan extension compared with the state-of-the-art RuO2 catalyst.

Abstract

The scale-up deployment of ruthenium (Ru)-based oxygen evolution reaction (OER) electrocatalysts in proton exchange membrane water electrolysis (PEMWE) is greatly restricted by the poor stability. As the lattice-oxygen-mediated mechanism (LOM) has been identified as the major contributor to the fast performance degradation, impeding lattice oxygen diffusion to inhibit lattice oxygen participation is imperative, yet remains challenging due to the lack of efficient approaches. Herein, we strategically regulate the bonding nature of Ru–O towards suppressed LOM via Ru-based high-entropy oxide (HEO) construction. The lattice disorder in HEOs is believed to increase migration energy barrier of lattice oxygen. As a result, the screened Ti23Nb9Hf13W12Ru43Ox exhibits 11.7 times slower lattice oxygen diffusion rate, 84% reduction in LOM ratio, and 29 times lifespan extension compared with the state-of-the-art RuO2 catalyst. Our work opens up a feasible avenue to constructing stabilized Ru-based OER catalysts towards scalable application.

Electronic Supplementary Material

Download File(s)
12274_2023_5913_MOESM1_ESM.pdf (5.1 MB)

References

[1]

Chen, J. Y.; Cui, P. X.; Zhao, G. Q.; Rui, K.; Lao, M. M.; Chen, Y. P.; Zheng, X. S.; Jiang, Y. Z.; Pan, H. G.; Dou, S. X. et al. Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2019, 58, 12540–12544.

[2]
Wu, H.; Huang, Q. X.; Shi, Y. Y.; Chang, J. W.; Lu, S. Y. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res., in press, https://doi.org/10.1007/s12274-023-5502-8.
[3]

Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy. 2013, 38, 4901–4934.

[4]

Lagadec, M. F.; Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat Mater. 2020, 19, 1140–1150.

[5]

Shi, Z. P.; Wang, X.; Ge, J. J.; Liu, C. P.; Xing, W. Fundamental understanding of the acidic oxygen evolution reaction: Mechanism study and state-of-the-art catalysts. Nanoscale 2020, 12, 13249–13275.

[6]

Ni, J.; Shi, Z. P.; Wang, X.; Wang, Y. B.; Wu, H. X.; Liu, C. P.; Ge, J. J.; Xing, W. Recent development of low iridium electrocatalysts toward efficient water oxidation. J. Electrochem. 2022, 28, 2214010.

[7]

Chen, X. J.; Liao, W. Y.; Zhong, M. X.; Chen, J. J.; Yan, S.; Li, W. M.; Wang, C.; Chen, W.; Lu, X. F. Rational design of robust iridium-ceria oxide-carbon nanofibers to boost oxygen evolution reaction in both alkaline and acidic media. Nano Res. 2023, 16, 7724–7732.

[8]

Zhao, G. Q.; Luo, Z. X.; Zhang, B. H.; Chen, Y. P.; Cui, X. Z.; Chen, J.; Liu, Y. F.; Gao, M. X.; Pan, H. G.; Sun, W. P. Epitaxial interface stabilizing iridium dioxide toward the oxygen evolution reaction under high working potentials. Nano Res. 2023, 16, 4767–4774.

[9]

Liu, Z. J.; Wang, G. J.; Guo, J. Y.; Wang, S. Y.; Zang, S. Q. Sub-2 nm IrO2/Ir nanoclusters with compressive strain and metal vacancies boost water oxidation in acid. Nano Res. 2023, 16, 334–342.

[10]

Hao, S. Y.; Sheng, H. Y.; Liu, M.; Huang, J. Z.; Zheng, G. K.; Zhang, F.; Liu, X. N.; Su, Z. W.; Hu, J. J.; Qian, Y. et al. Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers. Nat. Nanotechnol. 2021, 16, 1371–1377.

[11]

Ji, M. W.; Yang, X.; Chang, S. D.; Chen, W. X.; Wang, J.; He, D. S.; Hu, Y.; Deng, Q.; Sun, Y.; Li, B. et al. RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Res. 2022, 15, 1959–1965.

[12]

Yao, Q.; Yu, Z. Y.; Chu, Y. H.; Lai, Y. H.; Chan, T. S.; Xu, Y.; Shao, Q.; Huang, X. Q. S incorporated RuO2-based nanorings for active and stable water oxidation in acid. Nano Res. 2022, 15, 3964–3970.

[13]

Niu, S. Q.; Kong, X. P.; Li, S. W.; Zhang, Y. Y.; Wu, J.; Zhao, W. W.; Xu, P. Low Ru loading RuO2/(Co, Mn)3O4 nanocomposite with modulated electronic structure for efficient oxygen evolution reaction in acid. Appl. Catal. B: Environ. 2021, 297, 120442.

[14]

Zhang, L. J.; Jang, H.; Liu, H. H.; Kim, M. G.; Yang, D. J.; Liu, S. G.; Liu, X. E.; Cho, J. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: A robust pH-universal oxygen evolution electrocatalyst. Angew. Chem., Int. Ed. 2021, 60, 18821–18829.

[15]

Liu, C. J.; Sheng, B. B.; Zhou, Q.; Cao, D. F.; Ding, H. H.; Chen, S. M.; Zhang, P. J.; Xia, Y. J.; Wu, X. J.; Song, L. Motivating Ru-bri site of RuO2 by boron doping toward high performance acidic and neutral oxygen evolution. Nano Res. 2022, 15, 7008–7015.

[16]

Feng, Q.; Wang, Q.; Zhang, Z.; Xiong, Y. Y. H.; Li, H. Y.; Yao, Y.; Yuan, X. Z.; Williams, M. C.; Gu, M.; Chen, H. et al. Highly active and stable ruthenate pyrochlore for enhanced oxygen evolution reaction in acidic medium electrolysis. Appl. Catal. B: Environ. 2019, 244, 494–501.

[17]

Lin, Y. C.; Tian, Z. Q.; Zhang, L. J.; Ma, J. Y.; Jiang, Z.; Deibert, B. J.; Ge, R. X.; Chen, L. Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 2019, 10, 162.

[18]

Shi, Z. P.; Li, J.; Wang, Y. B.; Liu, S. W.; Zhu, J. B.; Yang, J. H.; Wang, X.; Ni, J.; Jiang, Z.; Zhang, L. J. et al. Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers. Nat. Commun. 2023, 14, 843.

[19]

Zeng, F.; Mebrahtu, C.; Liao, L. F.; Beine, A. K.; Palkovits, R. Stability and deactivation of OER electrocatalysts: A review. J. Energy Chem. 2022, 69, 301–329.

[20]

Wang, Z. B.; Guo, X. Y.; Montoya, J.; Nørskov, J. K. Predicting aqueous stability of solid with computed Pourbaix diagram using SCAN functional. npj Comput. Mater. 2020, 6, 160.

[21]

Cherevko, S.; Geiger, S.; Kasian, O.; Kulyk, N.; Grote, J. P.; Savan, A.; Shrestha, B. R.; Merzlikin, S.; Breitbach, B.; Ludwig, A. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catal. Today. 2016, 262, 170–180.

[22]

Ma, Y. Y.; An, Y. R.; Xu, Z.; Cheng, L. F.; Yuan, W. Y. Activating lattice oxygen of two-dimensional MnXn−1O2 MXenes via zero-dimensional graphene quantum dots for water oxidation. Sci. China Mater. 2022, 65, 3053–3061.

[23]

Grimaud, A.; Demortière, A.; Saubanère, M.; Dachraoui, W.; Duchamp, M.; Doublet, M. L.; Tarascon, J. M. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy. 2016, 2, 16189.

[24]

Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

[25]

Jiang, Y.; Mao, Y. N.; Jiang, Y. M.; Liu, H.; Shen, W.; Li, M.; He, R. X. Atomic equidistribution enhanced RuIr electrocatalysts for overall water splitting in the whole pH range. Chem. Eng. J. 2022, 450, 137909.

[26]

Hao, S. Y.; Liu, M.; Pan, J. J.; Liu, X. N.; Tan, X. L.; Xu, N.; He, Y.; Lei, L. C.; Zhang, X. W. Dopants fixation of Ruthenium for boosting acidic oxygen evolution stability and activity. Nat. Commun. 2020, 11, 5368.

[27]

He, J.; Li, W. Q.; Xu, P.; Sun, J. M. Tuning electron correlations of RuO2 by co-doping of Mo and Ce for boosting electrocatalytic water oxidation in acidic media. Appl. Catal. B: Environ. 2021, 298, 120528.

[28]

Lin, C.; Li, J. L.; Li, X. P.; Yang, S.; Luo, W.; Zhang, Y. J.; Kim, S. H.; Kim, D. H.; Shinde, S. S.; Li, Y. F. et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal 2021, 4, 1012–1023.

[29]

Pan, Y. L.; Xu, X. M.; Zhong, Y. J.; Ge, L.; Chen, Y. B.; Veder, J. P. M.; Guan, D. Q.; O'Hayre, R.; Li, M. R.; Wang, G. X. et al. Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun. 2020, 11, 2002.

[30]

Mefford, J. T.; Rong, X.; Abakumov, A. M.; Hardin, W. G.; Dai, S.; Kolpak, A. M.; Johnston, K. P.; Stevenson, K. J. Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat. Commun. 2016, 7, 11053.

[31]

van Buren, F. R.; Broers, G. H. J.; Bouman, A. J.; Boesveld, C. The electrochemical determination of oxygen ion diffusion coefficients in La0.50Sr0.50CoO3−y. J. Electroanal. Chem. Interfacial Electrochem. 1978, 88, 353–361.

[32]

van Buren, F. R.; Broers, G. H. J.; Bouman, A. J.; Boesveld, C. An electrochemical method for the determination of oxygen ion diffusion coefficients in La1−xSrxCoO3−y compounds: Theoretical aspects. J. Electroanal. Chem. Interfacial Electrochem. 1978, 87, 389–394.

[33]

Huang, X. F.; Yang, G. X.; Li, S.; Wang, H. J.; Cao, Y. H.; Peng, F.; Yu, H. Noble-metal-based high-entropy-alloy nanoparticles for electrocatalysis. J. Energy Chem. 2022, 68, 721–751.

Nano Research
Pages 1107-1113
Cite this article:
Ni J, Shi Z, Wang Y, et al. Suppressing the lattice oxygen diffusion via high-entropy oxide construction towards stabilized acidic water oxidation. Nano Research, 2024, 17(3): 1107-1113. https://doi.org/10.1007/s12274-023-5913-6
Topics:

898

Views

14

Crossref

14

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 11 April 2023
Revised: 29 May 2023
Accepted: 11 June 2023
Published: 08 August 2023
© Tsinghua University Press 2023
Return