The correlation between Epstein-Barr virus (EBV) infection and nasopharyngeal carcinoma (NPC) risk has been extensively researched. The continual monitoring of EBV-IgAs provides a promising approach of NPC screening in its early stage. In this study, we successfully synthesized a single-atom nanozyme (SANzyme) through the application of iron-porphyrin based metal organic framework (MOF-FeP). The MOF-FeP possesses precisely-defined electronic and geometric structures that accurately mimic highly-evolved catalytic site of natural peroxidase. The peroxidase-like activity of MOF-FeP enables it to catalyze the chemiluminescence of luminol substrate. By integrating MOF-FeP into a traditional strip, we created a rapid and highly-sensitive evaluation tool for detecting EBV-IgAs. Importantly, the MOF-FeP strip enables the simultaneous detection of three EBV-IgAs, greatly improving the accuracy of EBV-associated NPC screening. The sensitivities of the MOF-FeP strip (75.56%–93.30%) surpass those of current enzyme-linked immunosorbent assay (ELISA) methods (64.44%–82.22%). This test takes only 16 min to perform as opposed to the customary 1–2 h required for standard ELISA. Additionally, the MOF-FeP strip is suitable for whole blood samples, thereby significantly simplifying the sample preparation and detection process. In conclusion, the MOF-FeP strip combines the simplicity of traditional strip with the high catalytic activity of SANzyme. Our innovative MOF-FeP strip offers a new point-of-care strategy for EBV-IgAs detection, which is expected to markedly facilitate early screening for EBV-associated diseases.
Wei, K. R.; Zheng, R. S.; Zhang, S. W.; Liang, Z. H.; Li, Z. M.; Chen, W. Q. Nasopharyngeal carcinoma incidence and mortality in China, 2013. Chin. J. Cancer 2017, 36, 90.
Zheng, S. H.; Wang, Y. T.; Liu, S. R.; Huang, Z. L.; Wang, G. N.; Lin, J. T.; Ding, S. R.; Chen, C.; Xia, Y. F. Addition of chemoradiotherapy to palliative chemotherapy in de novo metastatic nasopharyngeal carcinoma: A real-world study. Cancer Cell Int. 2022, 22, 36.
Mahdavifar, N.; Ghoncheh, M.; Mohammadian-Hafshejani, A.; Khosravi, B.; Salehiniya, H. Epidemiology and inequality in the incidence and mortality of nasopharynx cancer in Asia. Osong Public Health Res. Perspect. 2016, 7, 360–372.
Lu, T. Z.; Guo, Q. J.; Lin, K. Y.; Chen, H. L.; Chen, Y. X.; Xu, Y. J.; Lin, C.; Su, Y.; Chen, Y.; Chen, M. Y. et al. Circulating Epstein-Barr virus microRNAs BART7-3p and BART13-3p as novel biomarkers in nasopharyngeal carcinoma. Cancer Sci. 2020, 111, 1711–1723.
Soldan, S. S.; Lieberman, P. M. Epstein-Barr virus and multiple sclerosis. Nat. Rev. Microbiol. 2023, 21, 51–64.
Feng, G. F.; Xu, Y. F.; Ma, N.; Midorikawa, K.; Oikawa, S.; Kobayashi, H.; Nakamura, S.; Ishinaga, H.; Zhang, Z.; Huang, G. W. et al. Influence of Epstein-Barr virus and human papillomavirus infection on macrophage migration inhibitory factor and macrophage polarization in nasopharyngeal carcinoma. BMC Cancer 2021, 21, 929.
Li, Y. Q.; Khin, N. S.; Chua, M. L. K. The evolution of Epstein-Barr virus detection in nasopharyngeal carcinoma. Cancer Biol. Med. 2018, 15, 1–5.
Ji, M. F.; Wang, D. K.; Yu, Y. L.; Guo, Y. Q.; Liang, J. S.; Cheng, W. M.; Zong, Y. S.; Chan, K. H.; Ng, S. P.; Wei, W. I. et al. Sustained elevation of Epstein-Barr virus antibody levels preceding clinical onset of nasopharyngeal carcinoma. Br. J. Cancer 2007, 96, 623–630.
Cao, S. M.; Liu, Z. W.; Jia, W. H.; Huang, Q. H.; Liu, Q.; Guo, X.; Huang, T. B.; Ye, W. M.; Hong, M. H. Fluctuations of Epstein-Barr virus serological antibodies and risk for nasopharyngeal carcinoma: A prospective screening study with a 20-year follow-up. PLoS One 2011, 6, e19100.
Chien, Y. C.; Chen, J. Y.; Liu, M. Y.; Yang, H. I.; Hsu, M. M.; Chen, C. J.; Yang, C. S. Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N. Engl. J. Med. 2001, 345, 1877–1882.
Li, T. D.; Guo, X. Y.; Ji, M. F.; Li, F. G.; Wang, H.; Cheng, W. M.; Chen, H. L.; Ng, M.; Ge, S. X.; Yuan, Y. et al. Establishment and validation of a two-step screening scheme for improved performance of serological screening of nasopharyngeal carcinoma. Cancer Med. 2018, 7, 1458–1467.
Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.
Lin, L. H.; Li, H.; Gu, H. F.; Sun, Z. Y.; Huang, J.; Qian, Z. N.; Li, H.; Liu, J. Z.; Xi, H. Y.; Wu, P. F. et al. Asymmetrically coordinated single-atom iron nanozymes with Fe-N1C2 structure: A peroxidase mimetic for melatonin detection. Nano Res. 2023, 16, 4751–4757.
Chen, M.; Zhou, H.; Liu, X. K.; Yuan, T. W.; Wang, W. Y.; Zhao, C.; Zhao, Y. F.; Zhou, F. Y.; Wang, X.; Xue, Z. G. et al. Single iron site nanozyme for ultrasensitive glucose detection. Small 2020, 16, 2002343.
Shi, C.; Li, Y.; Gu, N. Iron-based nanozymes in disease diagnosis and treatment. ChemBioChem 2020, 21, 2722–2732.
Duan, D. M.; Fan, K. L.; Zhang, D. X.; Tan, S. G.; Liang, M. F.; Liu, Y.; Zhang, J. L.; Zhang, P. H.; Liu, W.; Qiu, X. G. et al. Nanozyme-strip for rapid local diagnosis of Ebola. Biosens. Bioelectron. 2015, 74, 134–141.
Liu, D.; Ju, C. H.; Han, C.; Shi, R.; Chen, X. H.; Duan, D. M.; Yan, J. H.; Yan, X. Y. Nanozyme chemiluminescence paper test for rapid and sensitive detection of SARS-CoV-2 antigen. Biosens. Bioelectron. 2021, 173, 112817.
Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.
Gong, W.; Zhang, W. Q.; Son, F. A.; Yang, K. W.; Chen, Z. J.; Chen, X. F.; Jiang, J. W.; Liu, Y.; Farha, O. K.; Cui, Y. Topological strain-induced regioselective linker elimination in a chiral Zr(IV)-based metal-organic framework. Chem 2021, 7, 190–201.
Dai, S.; Nouar, F.; Zhang, S. J.; Tissot, A.; Serre, C. One-step room-temperature synthesis of metal(IV) carboxylate metal-organic frameworks. Angew. Chem. 2021, 133, 4328–4334.
Wei, D. L.; Zhang, X. Y.; Chen, B.; Zeng, K. Using bimetallic Au@Pt nanozymes as a visual tag and as an enzyme mimic in enhanced sensitive lateral-flow immunoassays: Application for the detection of streptomycin. Anal. Chim. Acta 2020, 1126, 106–113.
Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem., Int. Ed. 2019, 58, 4911–4916.
Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.
Jiao, L.; Xu, W. Q.; Yan, H. Y.; Wu, Y.; Liu, C. R.; Du, D.; Lin, Y. H.; Zhu, C. Z. Fe-N-C single-atom nanozymes for the intracellular hydrogen peroxide detection. Anal. Chem. 2019, 91, 11994–11999.
Leung, S. F.; Tam, J. S.; Chan, A. T. C.; Zee, B.; Chan, L. Y. S.; Huang, D. P.; Van Hasselt, A.; Johnson, P. J.; Lo, Y. M. D. Improved accuracy of detection of nasopharyngeal carcinoma by combined application of circulating Epstein-Barr virus DNA and anti-Epstein-Barr viral capsid antigen IgA antibody. Clin. Chem. 2004, 50, 339–345.
Connolly, Y.; Littler, E.; Sun, N.; Chen, X. Y.; Huang, P. C.; Stacey, S. N.; Arrand, J. R. Antibodies to Epstein-Barr virus thymidine kinase: A characteristic marker for the serological detection of nasopharyngeal carcinoma. 3.0.CO;2-G">Int. J. Cancer 2001, 91, 692–697.
Ebrahim, A.; DeVore, K.; Fischer, T. Limitations of accelerated stability model based on the Arrhenius equation for shelf life estimation of in vitro diagnostic products. Clin. Chem. 2021, 67, 684–688.