AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electrostatically connected nanoarchitected electrocatalytic films for boosted water splitting

Chao-Peng Wang1,§Hao Sun1,§Gang Bian1Jia-Xi Wang1Xixi Pang1Guoqi Wang1Jian Zhu1,2,3( )Xian-He Bu1,2( )
School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China

§ Chao-Peng Wang and Hao Sun contributed equally to this work.

Show Author Information

Graphical Abstract

Ultrathin two-dimensional (2D) electrocatalysts with ordered stacking and controllable thicknesses can be homogeneously deposited via layer-by-layer (LbL) assembly on desired surfaces with enhanced water splitting performance. Such nanofilms can possess high mass activities, which are ~ 20 times those of drop-casted films.

Abstract

Active sites of two-dimensional (2D) electrocatalysts are often partially blocked owing to their inevitable stacking and hydrophobic polymeric binders in macroscale electrodes, therefore impeding their applications in efficient electrolyzers. Here, using layered double hydroxide (LDH) nanosheets as a model 2D electrocatalyst, we demonstrate that their performance toward water splitting can be boosted when they are electrostatically assembled into an organized structure pillared by hydrophilic polyelectrolytes or nanoparticles in a layer-by-layer (LbL) fashion. In particular, their mass activity on a planar electrode can be as large as 2.267 mA·μg−1 toward oxygen evolution reaction (OER), when NiFe-LDH nanosheets are electrostatically connected by poly(sodium 4-styrenesulfonate) (PSS), while drop-casted NiFe-LDH nanosheets only have a mass activity of 0.116 mA·μg−1. In addition, these homogeneous NiFe-LDH nanofilms can be easily deposited on three-dimensional (3D) surfaces with high areas, such as carbon cloths, to serve as practical electrodes with overpotentials of 328 mV at a current density of 100 mA·cm−2, and stability for 40 h. Furthermore, Pt nanoparticles can be LbL assembled with NiFe-LDH as bifunctional electrodes for synergistically boosted oxygen and hydrogen evolution reactions (HER), leading to successful overall water splitting powered by a 1.5 V battery. This study heralds the spatial control of 2D nanomaterials in nanoscale precision as an efficient strategy for the design of advanced electrocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2023_5917_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Obama, B. The irreversible momentum of clean energy. Science 2017, 355, 126–129.

[2]
Cheng, W. R.; Xi, S. B.; Wu, Z. P.; Luan, D. Y.; Lou, X. W. In situ activation of Br-confined Ni-based metal-organic framework hollow prisms toward efficient electrochemical oxygen evolution. Sci. Adv. 2021, 7, eabk0919.
[3]

He, Y. T.; Yang, X. X.; Li, Y. S.; Liu, L. T.; Guo, S. W.; Shu, C. Y.; Liu, F.; Liu, Y. N.; Tan, Q.; Wu, G. Atomically dispersed Fe-Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn-air batteries. ACS Catal. 2022, 12, 1216–1227.

[4]

Sanati, S.; Morsali, A.; García, H. First-row transition metal-based materials derived from bimetallic metal-organic frameworks as highly efficient electrocatalysts for electrochemical water splitting. Energy Environ. Sci. 2022, 15, 3119–3151.

[5]

Wang, C. P.; Feng, Y.; Sun, H.; Wang, Y. R.; Yin, J.; Yao, Z. P.; Bu, X. H.; Zhu, J. Self-optimized metal-organic framework electrocatalysts with structural stability and high current tolerance for water oxidation. ACS Catal. 2021, 11, 7132–7143.

[6]

Wu, Z. X.; Zhao, Y.; Xiao, W. P.; Fu, Y. L.; Jia, B. H.; Ma, T. Y.; Wang, L. Metallic-bonded Pt-Co for atomically dispersed Pt in the Co4N matrix as an efficient electrocatalyst for hydrogen generation. ACS Nano 2022, 16, 18038–18047.

[7]

Gao, Y. X.; Chen, Z.; Zhao, Y.; Yu, W. L.; Jiang, X. L.; He, M. S.; Li, Z. J.; Ma, T. Y.; Wu, Z. X.; Wang, L. Facile synthesis of MoP-Ru2P on porous N, P co-doped carbon for efficiently electrocatalytic hydrogen evolution reaction in full pH range. Appl. Catal. B:Environ. 2022, 303, 120879.

[8]
Lv, L.; Yang, Z. X.; Chen, K.; Wang, C. D.; Xiong, Y. J. 2D layered double hydroxides for oxygen evolution reaction: From fundamental design to application. Adv. Energy Mater. 2019, 9, 1803358.
[9]

Liu, D.; Chen, M. P.; Du, X. Y.; Ai, H. Q.; Lo, K. H.; Wang, S. P.; Chen, S.; Xing, G. C.; Wang, X. S.; Pan, H. Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Adv. Funct. Mater. 2021, 31, 2008983.

[10]

Yu, W. L.; Chen, Z.; Fu, Y. L.; Xiao, W. P.; Dong, B.; Chai, Y. M.; Wu, Z. X.; Wang, L. Superb all-pH hydrogen evolution performances powered by ultralow Pt-decorated hierarchical Ni-Mo porous microcolumns. Adv. Funct. Mater. 2023, 33, 2210855.

[11]

Su, H.; Soldatov, M. A.; Roldugin, V.; Liu, Q. H. Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. eScience 2022, 2, 102–109.

[12]

Kim, Y. J.; Lee, G. R.; Cho, E. N.; Jung, Y. S. Fabrication and applications of 3D nanoarchitectures for advanced electrocatalysts and sensors. Adv. Mater. 2020, 32, 1907500.

[13]

Chen, R.; Hung, S. F.; Zhou, D. J.; Gao, J. J.; Yang, C. J.; Tao, H. B.; Yang, H. B.; Zhang, L. P.; Zhang, L. L.; Xiong, Q. H. et al. Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv. Mater. 2019, 31, 1903909.

[14]

Kuai, C. G.; Zhang, Y.; Wu, D. Y.; Sokaras, D.; Mu, L. Q.; Spence, S.; Nordlund, D.; Lin, F.; Du, X. W. Fully oxidized Ni-Fe layered double hydroxide with 100% exposed active sites for catalyzing oxygen evolution reaction. ACS Catal. 2019, 9, 6027–6032.

[15]

Chattot, R.; Bordet, P.; Martens, I.; Drnec, J.; Dubau, L.; Maillard, F. Building practical descriptors for defect engineering of electrocatalytic materials. ACS Catal. 2020, 10, 9046–9056.

[16]

Zhang, X.; Zhao, Y. F.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Zhang, T. R. A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv. Energy Mater. 2019, 9, 1900881.

[17]

Chen, Z.; Li, Q. C.; Xiang, H. M.; Wang, Y.; Yang, P. F.; Dai, C. L.; Zhang, H. D.; Xiao, W. P.; Wu, Z. X.; Wang, L. Hierarchical porous NiFe-P@NC as an efficient electrocatalyst for alkaline hydrogen production and seawater electrolysis at high current density. Inorg. Chem. Front. 2023, 10, 1493–1500.

[18]

Anantharaj, S.; Kundu, S. Do the evaluation parameters reflect intrinsic activity of electrocatalysts in electrochemical water splitting. ACS Energy Lett. 2019, 4, 1260–1264.

[19]

Dou, Y. H.; He, C. T.; Zhang, L.; Yin, H. J.; Al-Mamun, M.; Ma, J. M.; Zhao, H. J. Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy. Nat. Commun. 2020, 11, 1664.

[20]

Lee, C.; Shin, K.; Jung, C.; Choi, P. P.; Henkelman, G.; Lee, H. M. Atomically embedded Ag via electrodiffusion boosts oxygen evolution of CoOOH nanosheet arrays. ACS Catal. 2020, 10, 562–569.

[21]

Lin, Y. P.; Wang, H.; Peng, C. K.; Bu, L. M.; Chiang, C. L.; Tian, K.; Zhao, Y.; Zhao, J. Q.; Lin, Y. G.; Lee, J. M. et al. Co-induced electronic optimization of hierarchical NiFe LDH for oxygen evolution. Small 2020, 16, 2002426.

[22]

Wu, Z. X.; Yang, P. F.; Li, Q. C.; Xiao, W. P.; Li, Z. J.; Xu, G. R.; Liu, F. S.; Jia, B. H.; Ma, T. Y.; Feng, S. H. et al. Microwave synthesis of Pt clusters on black TiO2 with abundant oxygen vacancies for efficient acidic electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2023, 62, e202300406.

[23]

Shen, P.; Zhou, B. W.; Chen, Z.; Xiao, W. P.; Fu, Y. L.; Wan, J.; Wu, Z. X.; Wang, L. Ruthenium-doped 3D Cu2O nanochains as efficient electrocatalyst towards hydrogen evolution and hydrazine oxidation. Appl. Catal. B:Environ. 2023, 325, 122305.

[24]

Zhao, X. H.; Levell, Z. H.; Yu, S.; Liu, Y. Y. Atomistic understanding of two-dimensional electrocatalysts from first principles. Chem. Rev. 2022, 122, 10675–10709.

[25]

Chen, Z. K.; Wang, X. K.; Han, Z. K.; Zhang, S. Y.; Pollastri, S.; Fan, Q. Q.; Qu, Z. Y.; Sarker, D.; Scheu, C.; Huang, M. H. et al. Revealing the formation mechanism and optimizing the synthesis conditions of layered double hydroxides for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2023, 62, e202215728.

[26]

He, Y. Q.; Jia, L. L.; Lu, X. Y.; Wang, C. H.; Liu, X. H.; Chen, G.; Wu, D.; Wen, Z. X.; Zhang, N.; Yamauchi, Y. et al. Molecular-scale manipulation of layer sequence in heteroassembled nanosheet films toward oxygen evolution electrocatalysts. ACS Nano 2022, 16, 4028–4040.

[27]

Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.

[28]

Wang, P. W.; Hayashi, T.; Meng, Q. B.; Wang, Q.; Liu, H.; Hashimoto, K.; Jiang, L. Highly boosted oxygen reduction reaction activity by tuning the underwater wetting state of the superhydrophobic electrode. Small 2017, 13, 1601250.

[29]
Sha, Y.; Peng, Y. D.; Huang, K.; Li, L.; Liu, Z. 3D binder-free integrated electrodes prepared by phase separation and laser induction (PSLI) method for oxygen electrocatalysis and zinc-air battery. Adv. Energy Mater. 2022, 12, 2200906.
[30]

Li, J.; Gao, X.; Li, Z. Z.; Wang, J. H.; Zhu, L.; Yin, C.; Wang, Y.; Li, X. B.; Liu, Z. F.; Zhang, J. et al. Superhydrophilic graphdiyne accelerates interfacial mass/electron transportation to boost electrocatalytic and photoelectrocatalytic water oxidation activity. Adv. Funct. Mater. 2019, 29, 1808079.

[31]

Chen, G. F.; Ma, T. Y.; Liu, Z. Q.; Li, N.; Su, Y. Z.; Davey, K.; Qiao, S. Z. Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv. Funct. Mater. 2016, 26, 3314–3323.

[32]

Sun, H. M.; Xu, X. B.; Yan, Z. H.; Chen, X.; Jiao, L. F.; Cheng, F. Y.; Chen, J. Superhydrophilic amorphous Co-B-P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 22062–22069.

[33]
Wang, C. P.; Lin, Y. X.; Cui, L.; Zhu, J.; Bu, X. H. 2D metal-organic frameworks as competent electrocatalysts for water splitting. Small 2023, 19, 2207342.
[34]

Lei, H.; Wan, Q. X.; Tan, S. Z.; Wang, Z. L.; Mai, W. J. Pt-quantum-dot-modified sulfur-doped NiFe layered double hydroxide for high-current-density alkaline water splitting at industrial temperature. Adv. Mater. 2023, 35, 2208209.

[35]

Wang, C. P.; Liu, H. Y.; Bian, G.; Gao, X. X.; Zhao, S. C.; Kang, Y.; Zhu, J.; Bu, X. H. Metal-layer assisted growth of ultralong quasi-2D MOF nanoarrays on arbitrary substrates for accelerated oxygen evolution. Small 2019, 15, 1906086.

[36]

Duan, M. T.; Qiu, M. J.; Sun, S. Q.; Guo, X. M.; Liu, Y. J.; Zheng, X. J.; Cao, F.; Kong, Q. H.; Zhang, J. H. Intercalating assembly of NiFe LDH nanosheets/CNTs composite as high-performance electrocatalyst for oxygen evolution reaction. Appl. Clay Sci. 2022, 216, 106360.

[37]

Richardson, J. J.; Björnmalm, M.; Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 2015, 348, aaa2491.

[38]

Zhang, Y.; Wu, B. Q.; He, Y. K.; Deng, W. Y.; Li, J. W.; Li, J. Y.; Qiao, N.; Xing, Y. F.; Yuan, X. Y.; Li, N. et al. Layer-by-layer processed binary all-polymer solar cells with efficiency over 16% enabled by finely optimized morphology. Nano Energy 2022, 93, 106858.

[39]

Lipton, J.; Weng, G. M.; Rӧhr, J. A.; Wang, H.; Taylor, A. D. Layer-by-layer assembly of two-dimensional materials: Meticulous control on the nanoscale. Matter 2020, 2, 1148–1165.

[40]

Ko, Y.; Park, J.; Mo, J.; Lee, S.; Song, Y.; Ko, Y.; Lee, H.; Kim, Y.; Huh, J.; Lee, S. W. et al. Layer-by-layer assembly-based electrocatalytic fibril electrodes enabling extremely low overpotentials and stable operation at 1 A·cm−2 in water-splitting reaction. Adv. Funct. Mater. 2021, 31, 2102530.

[41]

Xiong, P.; Zhang, X. Y.; Wan, H.; Wang, S. J.; Zhao, Y. F.; Zhang, J. Q.; Zhou, D.; Gao, W. C.; Ma, R. Z.; Sasaki, T. et al. Interface modulation of two-dimensional superlattices for efficient overall water splitting. Nano Lett. 2019, 19, 4518–4526.

[42]

Zhang, C.; Zhao, J. W.; Zhou, L.; Li, Z. H.; Shao, M. F.; Wei, M. Layer-by-layer assembly of exfoliated layered double hydroxide nanosheets for enhanced electrochemical oxidation of water. J. Mater. Chem. A 2016, 4, 11516–11523.

[43]

Xie, C. L.; Niu, Z. Q.; Kim, D.; Li, M. F.; Yang, P. D. Surface and interface control in nanoparticle catalysis. Chem. Rev. 2020, 120, 1184–1249.

[44]

Cui, Y. L. S.; Tan, X.; Xiao, K. F.; Zhao, S. L.; Bedford, N. M.; Liu, Y. F.; Wang, Z. C.; Wu, K. H.; Pan, J.; Saputera, W. H. et al. Tungsten oxide/carbide surface heterojunction catalyst with high hydrogen evolution activity. ACS Energy Lett. 2020, 5, 3560–3568.

[45]

Yu, J. F.; Martin, B. R.; Clearfield, A.; Luo, Z. P.; Sun, L. Y. One-step direct synthesis of layered double hydroxide single-layer nanosheets. Nanoscale 2015, 7, 9448–9451.

[46]

Zhao, Y. F.; Zhang, X.; Jia, X. D.; Waterhouse, G. I. N.; Shi, R.; Zhang, X. R.; Zhan, F.; Tao, Y.; Wu, L. Z.; Tung, C. H. et al. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 2018, 8, 1703585.

[47]

Stevens, M. B.; Enman, L. J.; Batchellor, A. S.; Cosby, M. R.; Vise, A. E.; Trang, C. D. M.; Boettcher, S. W. Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts. Chem. Mater. 2017, 29, 120–140.

[48]

Chen, Y. P.; Zhou, Q.; Zhao, G. Q.; Yu, Z. W.; Wang, X. L.; Dou, S. X.; Sun, W. P. Electrochemically inert g-C3N4 promotes water oxidation catalysis. Adv. Funct. Mater. 2018, 28, 1705583.

[49]

Anantharaj, S.; Ede, S. R.; Karthick, K.; Sankar, S. S.; Sangeetha, K.; Karthik, P. E.; Kundu, S. Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment. Energy Environ. Sci. 2018, 11, 744–771.

[50]

Lin, H. W.; Raja, D. S.; Chuah, X. F.; Hsieh, C. T.; Chen, Y. A.; Lu, S. Y. Bi-metallic MOFs possessing hierarchical synergistic effects as high performance electrocatalysts for overall water splitting at high current densities. Appl. Catal. B:Environ. 2019, 258, 118023.

[51]

Wei, C.; Rao, R. R.; Peng, J. Y.; Huang, B. T.; Stephens, I. E. L.; Risch, M.; Xu, Z. J.; Shao-Horn, Y. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 2019, 31, 1806296.

[52]

Mei, Y.; Zhou, J. H.; Hao, Y. T.; Hu, X.; Lin, J.; Huang, Y. X.; Li, L.; Feng, C. G.; Wu, F.; Chen, R. J. High-lithiophilicity host with micro/nanostructured active sites based on wenzel wetting model for dendrite-free lithium metal anodes. Adv. Funct. Mater. 2021, 31, 2106676.

[53]

Hou, J. G.; Wu, Y. Z.; Zhang, B.; Cao, S. Y.; Li, Z. W.; Sun, L. C. Rational design of nanoarray architectures for electrocatalytic water splitting. Adv. Funct. Mater. 2019, 29, 1808367.

[54]

Wang, C. P.; Kong, L. J.; Sun, H.; Zhong, M.; Cui, H. J.; Zhang, Y. H.; Wang, D. H.; Zhu, J.; Bu, X. H. Carbon layer coated Ni3S2/MoS2 nanohybrids as efficient bifunctional electrocatalysts for overall water splitting. ChemElectroChem 2019, 6, 5603–5609.

Nano Research
Pages 1114-1122
Cite this article:
Wang C-P, Sun H, Bian G, et al. Electrostatically connected nanoarchitected electrocatalytic films for boosted water splitting. Nano Research, 2024, 17(3): 1114-1122. https://doi.org/10.1007/s12274-023-5917-2
Topics:

571

Views

1

Crossref

6

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 27 April 2023
Revised: 31 May 2023
Accepted: 11 June 2023
Published: 01 August 2023
© Tsinghua University Press 2023
Return