AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Utilizing a metal-forging inspired chain combing strategy to enhance properties and expand applications of Nylon 66 plastic via heat inducing

Junyu Yang1Jiangwei Zhang2Nan Wang1Guangyuan Zhou1( )
Division of Energy Materials, Daglian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Innovation Center of Energy Material and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
Show Author Information

Graphical Abstract

In this research, we present a straightforward and efficient technique for surface mechanical treatment (SMT) that enables the microscopic combing of polymer chains, thereby improving the properties of engineering plastics. This method has the potential to enhance the quality of engineering plastics and makes them more competitive in the market.

Abstract

The mechanical properties of engineering plastics can be enhanced through effective surface mechanical treatment (SMT), which can be applied to various types of engineering plastics, eliminating the limitations of conventional polymer processing and could potentially extend their applications and improve their performance and reliability as structural-functional materials. Inspired by metal forging, this work proposes a simple and effective SMT strategy to enhance the mechanical properties of polyamide 66 (PA66). Tensile tests have shown that SMTed PA66 samples exhibit significant improvements in both Young’s modulus and ultimate tensile strength (UTS), with a 2104 MPa Young’s modulus, almost double that of the pristine samples, and a 35.56% increase in UTS, reaching 183 MPa. Additionally, the modulus within the localized SMTed surface layer could reach up to 14 GPa, which is approximately 14 times higher than that of the pristine sample. The Vickers hardness within the localized SMTed surface layer can be doubled, reaching 10.72 Hv, and the crystallinity can increase by approximately 20% compared to the untreated region. Furthermore, force field molecular dynamics (FFMD) simulations were conducted to investigate the ternary relationship between the SMT method, PA66’s molecular structure, and its properties. The combination of MD simulations and versatile structural characterizations provides evidence that the SMT method’s mechanism, under heat induction, results in a chain-combing procedure that changes the polymer’s molecular morphology microscopically and enhances its mechanical properties macroscopically.

Electronic Supplementary Material

Download File(s)
12274_2023_5928_MOESM1_ESM.pdf (580.4 KB)

References

[1]

Weitz, D. A. Soft materials evolution and revolution. Nat. Mater. 2022, 21, 986–988.

[2]

Jehanno, C.; Alty, J. W.; Roosen, M.; De Meester, S.; Dove, A. P.; Chen, E. Y. X.; Leibfarth, F. A.; Sardon, H. Critical advances and future opportunities in upcycling commodity polymers. Nature 2022, 603, 803–814.

[3]

MacLeod, M.; Arp, H. P. H.; Tekman, M. B.; Jahnke, A. The global threat from plastic pollution. Science 2021, 373, 61–65.

[4]

Gentekos, D. T.; Sifri, R. J.; Fors, B. P. Controlling polymer properties through the shape of the molecular-weight distribution. Nat. Rev. Mater. 2019, 4, 761–774.

[5]
Fink, J. K. Reactive Polymers: Fundamentals and Applications: A Concise Guide to Industrial Polymers; 3rd ed. William Andrew: Amsterdam, 2017.
[6]
Olabisi, O.; Adewale, K. Handbook of Thermoplastics; CRC Press: Boca Raton, 2016.
[7]

Puneetha, P.; Mallem, S. P. R.; Park, S. C.; Kim, S.; Heo, D. H.; Kim, C. M.; Shim, J.; An, S. J.; Lee, D. Y.; Park, K. I. Ultra-flexible graphene/nylon/PDMS coaxial fiber-shaped multifunctional sensor. Nano Res. 2023, 16, 5541–5547.

[8]

Yang, X.; Zhang, H.; Zhao, J.; Liu, Y. H.; Zhang, Z. M.; Liu, Y. G.; Yan, X. Z. Multiscale supramolecular polymer network with microphase-separated structure enabled by host-guest self-sorting recognitions. Chem. Eng. J. 2022, 450, 138135.

[9]
Salamone, J. C. Concise Polymeric Materials Encyclopedia; CRC Press: Boca Raton, 1998.
[10]
Wypych, G. Handbook of Polymers; ChemTec Publishing: Toronto, 2012.
[11]
Black, J. T.; Kohser, R. A. DeGarmo’s Materials and Processes in Manufacturing; Wiley, 2011.
[12]
Kaushish, J. P. Manufacturing Processes; PHI Learning: New Delhi, 2010.
[13]
Yu, L.; Gao, T. T.; Mi, R. Y.; Huang, J.; Kong, W. Q.; Liu, D. P.; Liang, Z. Q.; Ye, D. D.; Chen, C. J. 3D-printed mechanically strong and extreme environment adaptable boron nitride/cellulose nanofluidic macrofibers. Nano Res. 2023, 16, 7609–7617.
[14]

Li, M. K.; Sun, Y. Y.; Feng, D. Y.; Ruan, K. P.; Liu, X.; Gu, J. W. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 2023, 16, 7820–7828.

[15]
Krueger, D. L., et al. Elastomeric laminates with microtextured skin layers. U.S. Patent 5,691,034, Nov. 25, 1997.
[16]

Ruzette, A. V.; Leibler, L. Block copolymers in tomorrow’s plastics. Nat. Mater. 2005, 4, 19–31.

[17]

Kietzke, T.; Neher, D.; Landfester, K.; Montenegro, R.; Güntner, R.; Scherf, U. Novel approaches to polymer blends based on polymer nanoparticles. Nat. Mater. 2003, 2, 408–412.

[18]

Li, X. Y.; Zhou, X.; Lu, K. Rapid heating induced ultrahigh stability of nanograined copper. Sci. Adv. 2020, 6, eaaz8003.

[19]

Li, X. Y.; Lu, K. Improving sustainability with simpler alloys. Science 2019, 364, 733–734.

[20]

Lu, S. D.; Wang, Z. B.; Lu, K. Strain-induced microstructure refinement in a tool steel subjected to surface mechanical attrition treatment. J. Mater. Sci. Technol. 2010, 26, 258–263.

[21]

Liu, X. C.; Zhang, H. W.; Lu, K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 2013, 342, 337–340.

[22]

Fang, T. H.; Li, W. L.; Tao, N. R.; Lu, K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 2011, 331, 1587–1590.

[23]

Liu, G.; Lu, J.; Lu, K. Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening. Mater. Sci. Eng. :A 2000, 286, 91–95.

[24]

Tao, N. R.; Wang, Z. B.; Tong, W. P.; Sui, M. L.; Lu, J.; Lu, K. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 2002, 50, 4603–4616.

[25]

Lu, K. Making strong nanomaterials ductile with gradients. Science 2014, 345, 1455–1456.

[26]

Tong, W. P.; Tao, N. R.; Wang, Z. B.; Lu, J.; Lu, K. Nitriding iron at lower temperatures. Science 2003, 299, 686–688.

[27]

Wang, L. M.; Wang, Z. B.; Guo, S.; Lu, K. Annealing-induced grain refinement in a nanostructured ferritic steel. J. Mater. Sci. Technol. 2012, 28, 41–45.

[28]

Yasuda, Y.; Hidaka, Y.; Mayumi, K.; Yamada, T.; Fujimoto, K.; Okazaki, S.; Yokoyama, H.; Ito, K. Molecular dynamics of polyrotaxane in solution investigated by quasi-elastic neutron scattering and molecular dynamics simulation: Sliding motion of rings on polymer. J. Am. Chem. Soc. 2019, 141, 9655–9663.

[29]

Brogan, A. P. S.; Sessions, R. B.; Perriman, A. W.; Mann, S. Molecular dynamics simulations reveal a dielectric-responsive coronal structure in protein-polymer surfactant hybrid nanoconstructs. J. Am. Chem. Soc. 2014, 136, 16824–16831.

[30]

Hutter, J.; Iannuzzi, M.; Schiffmann, F.; VandeVondele, J. CP2K: Atomistic simulations of condensed matter systems. WIREs Comput Mol Sci. 2014, 4, 15–25.

[31]

Cnudde, P.; Demuynck, R.; Vandenbrande, S.; Waroquier, M.; Sastre, G.; Van Speybroeck, V. Light olefin diffusion during the MTO process on H-SAPO-34: A complex interplay of molecular factors. J. Am. Chem. Soc. 2020, 142, 6007–6017.

[32]

Bunn, C. W.; Garner, E. V.; Bragg, W. L. The crystal structures of two polyamides (“nylons”). Proc. Roy. Soc. A:Math., Phys. Eng. Sci. 1947, 189, 39–68.

[33]

Galimberti, D.; Quarti, C.; Milani, A.; Brambilla, L.; Civalleri, B.; Castiglioni, C. IR spectroscopy of crystalline polymers from ab initio calculations: Nylon 6, 6. Vib. Spectrosc. 2013, 66, 83–92.

[34]

Huang, Z. J.; Choudhury, S.; Paul, N.; Thienenkamp, J. H.; Lennartz, P.; Gong, H. X.; Müller-Buschbaum, P.; Brunklaus, G.; Gilles, R.; Bao, Z. N. Effects of polymer coating mechanics at solid–electrolyte interphase for stabilizing lithium metal anodes. Adv. Energy Mater. 2022, 12, 2103187.

[35]

Han, T. Y.; Lin, C. H.; Lin, Y. S.; Yeh, C. M.; Chen, Y. A.; Li, H. Y.; Xiao, Y. T.; Chang, J. W.; Su, A. C.; Jeng, U. S. et al. Autonomously self-healing and ultrafast highly-stretching recoverable polymer through trans-octahedral metal-ligand coordination for skin-inspired tactile sensing. Chem. Eng. J. 2022, 438, 135592.

[36]

Wang, Z.; Ma, Z.; Li, L. B. Flow-induced crystallization of polymers: Molecular and thermodynamic considerations. Macromolecules 2016, 49, 1505–1517.

[37]

Chen, B.; Yuan, M.; Ma, R. X.; Wang, X. H.; Cao, W.; Liu, C. T.; Shen, C. Y.; Wang, Z. High performance piezoelectric polymer film with aligned electroactive phase nanofibrils achieved by melt stretching of slightly crosslinked poly(vinylidene fluoride) for sensor applications. Chem. Eng. J. 2022, 433, 134475.

[38]

Yang, J. Y.; Damle, S.; Maiti, S.; Velankar, S. S. Stretching-induced wrinkling in plastic-rubber composites. Soft Matter 2017, 13, 776–787.

[39]

Lai, Y. H.; Kuo, M. C.; Huang, J. C.; Chen, M. On the PEEK composites reinforced by surface-modified nano-silica. Mater. Sci. Eng. :A 2007, 458, 158–169.

[40]

Zielinski, J. M.; Duda, J. L. Predicting polymer/solvent diffusion coefficients using free-volume theory. AIChE J. 1992, 38, 405–415.

Nano Research
Pages 2164-2171
Cite this article:
Yang J, Zhang J, Wang N, et al. Utilizing a metal-forging inspired chain combing strategy to enhance properties and expand applications of Nylon 66 plastic via heat inducing. Nano Research, 2024, 17(3): 2164-2171. https://doi.org/10.1007/s12274-023-5928-z
Topics:

488

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 March 2023
Revised: 13 June 2023
Accepted: 13 June 2023
Published: 10 August 2023
© Tsinghua University Press 2023
Return