Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The chirality structure of a single-walled carbon nanotube (SWNT) strongly depends on the composition of catalyst used in the chemical vapor deposition process. In this study, we develop a porous magnesia supported manganese-rhenium (MnRe/MgO) catalyst for chirality-selective synthesis of SWNTs. Detailed characterizations reveal that (6,5) tubes with a selectivity higher than 70% are grown from the Re-rich MnRe/MgO catalyst. By comparing the SWNT growth results with those of monometallic Mn or Re, the formation of sigma phase, an intermetallic compound occurring in transition-metal alloy systems, is revealed to be crucial for the dominant synthesis of (6,5) SWNTs. This work not only extends the application of sigma phase alloy for catalytic synthesis of SWNTs, but also sheds lights on the growth of SWNTs with a high chirality selectivity.
He, M.; Zhang, S.; Zhang, J. Horizontal single-walled carbon nanotube arrays: Controlled synthesis, characterizations, and applications. Chem. Rev. 2020, 120, 12592–12684.
Yang, F.; Wang, M.; Zhang, D.; Yang, J.; Zheng, M.; Li, Y. Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev. 2020, 120, 2693–2758.
Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530.
Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M. D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y.; Murphy, D.; Arvind.; Chandrakasan, A.; Shulaker, M. M. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602.
Antaris, A. L.; Robinson, J. T.; Yaghi, O. K.; Hong, G.; Diao, S.; Luong, R.; Dai, H. Ultra-low doses of chirality sorted (6,5) carbon nanotubes for simultaneous tumor imaging and photothermal therapy. ACS Nano 2013, 7, 3644–3652.
Hong, G.; Diao, S.; Chang, J.; Antaris, A. L.; Chen, C.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 2014, 8, 723–730.
He, M.; Zhang, S.; Wu, Q.; Xue, H.; Xin, B.; Wang, D.; Zhang, J. Designing catalysts for chirality-selective synthesis of single-walled carbon nanotubes: Past success and future opportunity. Adv. Mater. 2019, 31, 1800805.
He, M.; Wang, X.; Zhang, S.; Jiang, H.; Cavalca, F.; Cui, H.; Wagner, J. B.; Hansen, T. W.; Kauppinen, E.; Zhang, J. Growth kinetics of single-walled carbon nanotubes with a (2n,n) chirality selection. Sci. Adv. 2019, 5, eaav9668.
Hao, S.; Qian, L.; Wu, Q.; Li, D.; Han, F.; Feng, L.; Xin, L.; Yang, T.; Wang, S.; Zhang, J.; He, M. Subnanometer single-walled carbon nanotube growth from Fe-containing layered double hydroxides. Chem. Eng. J. 2022, 446, 137087.
Yang, D.; Li, L.; Wei, X.; Wang, Y.; Zhou, W.; Kataura, H.; Xie, S.; Liu, H. Submilligram-scale separation of near-zigzag single-chirality carbon nanotubes by temperature controlling a binary surfactant system. Sci. Adv. 2021, 7, eabe0084.
Ma, C.; Liu, Y.; Zhang, L.; Qian, L.; Zhao, Y.; Tian, Y.; Wu, Q.; Li, D.; Zhao, N.; Zhang, X.; Xin, L.; Liu, H.; Hou, P.; Liu, C.; He, M.; Zhang, J. Bulk growth and separation of single-walled carbon nanotubes from Rhenium catalyst. Nano Res. 2022, 15, 5775–5780.
Ghosh, S.; Bachilo, S. M.; Weisman, R. B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat. Nanotechnol. 2010, 5, 443–450.
Fagan, J. A.; Khripin, C. Y.; Silvera Batista, C. A.; Simpson, J. R.; Hároz, E. H.; Hight Walker, A. R.; Zheng, M. Isolation of specific small-diameter single-wall carbon nanotube species via aqueous two-phase extraction. Adv. Mater. 2014, 26, 2800–2804.
Samanta, S. K.; Fritsch, M.; Scherf, U.; Gomulya, W.; Bisri, S. Z.; Loi, M. A. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: The power of polymer wrapping. Acc. Chem. Res. 2014, 47, 2446–2456.
Cheng, Q.; Debnath, S.; Gregan, E.; Byrne, H. J. Ultrasound-assisted SWNTs dispersion: effects of sonication parameters and solvent properties. J. Phys. Chem. C 2010, 114, 8821–8827.
Chiang, W.-H.; Mohan Sankaran, R. Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1−x nanoparticles. Nat. Mater. 2009, 8, 882–886.
Yang, F.; Wang, X.; Zhang, D.; Yang, J.; Luo, D.; Xu, Z.; Wei, J.; Wang, J. Q.; Peng, F.; Li, X.; Li, R.; Li, Y.; Li, M.; Bai, X.; Ding, F. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522–524.
He, M.; Jin, H.; Zhang, L.; Jiang, H.; Yang, T.; Cui, H.; Fossard, F.; Wagner, J. B.; Karppinen, M.; Kauppinen, E. I. Environmental transmission electron microscopy investigations of Pt-Fe2O3 nanoparticles for nucleating carbon nanotubes. Carbon 2016, 110, 243–248.
Qiu, L.; Ding, F. Contact-induced phase separation of alloy catalyst to promote carbon nanotube growth. Phys. Rev. Lett. 2019, 123, 256101.
Joubert, J.-M. Crystal chemistry and calphad modeling of the σ phase. Prog. Mater. Sci. 2008, 53, 528–583.
Flynn P C, Wanke S E. Experimental studies of sintering of supported Platinum catalysts. J. Catal. 1975, 37, 432–448.
Morgan K, Goguet A, Hardacre C. Metal redispersion strategies for recycling of supported metal catalysts: a perspective. ACS Catal. 2015, 5, 3430–3445.
Ding, F.; Harutyunyan, A. R.; Yakobson, B. I. Dislocation theory of chirality-controlled nanotube growth. Proc. Natl. Acad. Sci. 2009, 106, 2506–2509.
He, M.; Magnin, Y.; Jiang, H.; Amara, H.; Kauppinen, E. I.; Loiseau, A.; Bichara, C. Growth modes and chiral selectivity of single-walled carbon nanotubes. Nanoscale 2018, 10, 6744–6750.