Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Immunotherapy has great promise in improving malignant tumor treatment. However, the efficacy of existing strategies is often limited by the immunosuppressive environment. Here, we demonstrate an in situ bionic immunoactivator, PLT-Bec1/DTA-1, with possessed natural advantages of platelets for tumor recruitment and activation, on which DTA-1 (CD357 monoclonal antibody) and Bec1 were tethered as combined immune boosters. PLT-Bec1/DTA-1, as a self-triggered release repository, can deliver the pre-tethered Bec1 and DTA-1 deeply through the secretion of platelet microparticles (PMPs), thereby cooperate tacitly and exhibit superiority in immune activation of dendritic cells (DCs) and T cells via autophagy inducibility, coupled with glucocorticoid-induced tumor necrosis factor receptor (GITR)-triggered TReg suppression, remodeled the immunosuppressive network of tumor microenvironment. PLT-Bec1/DTA-1 promoted antigen presentation and T cell proliferation, and alleviated the low activity state of bone marrow-derived dendritic cells (BMDCs) in tumor suppressive environment. PLT-Bec1/DTA-1 inhibited tumor recurrence (5- and 13-fold lower of control group in tumor volume) and CD8+ T/TReg ratio (6.3- and 8.8-fold vs. control group) in mouse tumor model after intravenous or subcutaneous administration. Also, PLT-Bec1/DTA-1 prevented tumor colonization in lung through in situ immune activation, and was slightly superior to the combined of Bec1 and PD-L1. Our findings highlight the promise of delivering immunostimulatory payloads via bionic carriers, eliciting automatic in situ activation of effector immune cells in tumor microenvironment for tumor eradication. All these results provide promising prospects into the application of immunoactivator in improving cancer synergistic immunotherapy to overcome the bottlenecks in clinic.
Ganesh, K.; Massague, J. Targeting metastatic cancer. Nat. Med. 2021, 27, 34–44.
Zhong, X. M.; Zhang, H. T.; Zhu, Y.; Liang, Y. Q.; Yuan, Z. L.; Li, J. C.; Li, J.; Li, X.; Jia, Y. F.; He, T. et al. Circulating tumor cells in cancer patients: Developments and clinical applications for immunotherapy. Mol. Cancer 2020, 19, 15.
Korman, A. J.; Garrett-Thomson, S. C.; Lonberg, N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat. Rev. Drug Discov. 2022, 21, 509–528.
Doroshow, D. B.; Bhalla, S.; Beasley, M. B.; Sholl, L. M.; Kerr, K. M.; Gnjatic, S.; Wistuba, I. I.; Rimm, D. L.; Tsao, M. S.; Hirsch, F. R. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2021, 18, 345–362.
Baldominos, P.; Barbera-Mourelle, A.; Barreiro, O.; Huang, Y.; Wight, A.; Cho, J. W.; Zhao, X.; Estivill, G.; Adam, I.; Sanchez, X. et al. Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche. Cell 2022, 185, 1694–1708.e19.
Jaiswal, A.; Verma, A.; Dannenfelser, R.; Melssen, M.; Tirosh, I.; Izar, B.; Kim, T. G.; Nirschl, C. J.; Devi, K. S. P.; Olson, W. C. Jr. et al. An activation to memory differentiation trajectory of tumor-infiltrating lymphocytes informs metastatic melanoma outcomes. Cancer Cell 2022, 40, 524–544.e5.
Li, C. X.; Jiang, P.; Wei, S. H.; Xu, X. F.; Wang, J. J. Regulatory T cells in tumor microenvironment: New mechanisms, potential therapeutic strategies and future prospects. Mol. Cancer 2020, 19, 116.
Sakaguchi, S.; Mikami, N.; Wing, J. B.; Tanaka, A.; Ichiyama, K.; Ohkura, N. Regulatory T cells and human disease. Annu. Rev. Immunol. 2020, 38, 541–566.
Veglia, F.; Perego, M.; Gabrilovich, D. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 2018, 19, 108–119.
Croft, M. Co-stimulatory members of the TNFR family: Keys to effective T-cell immunity. . Nat. Rev. Immunol. 2003, 3, 609–620.
Buzzatti, G.; Dellepiane, C.; Del Mastro, L. New emerging targets in cancer immunotherapy: The role of GITR. ESMO Open 2019, 4, e000738.
Kim, I. K.; Kim, B. S.; Koh, C. H.; Seok, J. W.; Park, J. S.; Shin, K. S.; Bae, E. A.; Lee, G. E.; Jeon, H.; Cho, J. et al. Glucocorticoid-induced tumor necrosis factor receptor-related protein co-stimulation facilitates tumor regression by inducing IL-9-producing helper T cells. Nat. Med. 2015, 21, 1010–1017.
Riley, R. S.; June, C. H.; Langer, R.; Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019, 18, 175–196.
Limpert, A. S.; Lambert, L. J.; Bakas, N. A.; Bata, N.; Brun, S. N.; Shaw, R. J.; Cosford, N. D. P. Autophagy in cancer: Regulation by small molecules. Trends Pharmacol. Sci. 2018, 39, 1021–1032.
Jiang, G. M.; Tan, Y.; Wang, H.; Peng, L.; Chen, H. T.; Meng, X. J.; Li, L. L.; Liu, Y.; Li, W. F.; Shan, H. The relationship between autophagy and the immune system and its applications for tumor immunotherapy. Mol. Cancer 2019, 18, 17.
Michaud, M.; Martins, I.; Sukkurwala, A. Q.; Adjemian, S.; Ma, Y. T.; Pellegatti, P.; Shen, S. S.; Kepp, O.; Scoazec, M.; Mignot, G. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011, 334, 1573–1577.
Levine, B.; Mizushima, N.; Virgin, H. W. Autophagy in immunity and inflammation. Nature 2011, 469, 323–335.
Ravikumar, B.; Sarkar, S.; Davies, J. E.; Futter, M.; Garcia-Arencibia, M.; Green-Thompson, Z. W.; Jimenez-Sanchez, M.; Korolchuk, V. I.; Lichtenberg, M.; Luo, S. Q. et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev. 2010, 90, 1383–1435.
Shibutani, S. T.; Saitoh, T.; Nowag, H.; Münz, C.; Yoshimori, T. Autophagy and autophagy-related proteins in the immune system. Nat. Immunol. 2015, 16, 1014–1024.
He, W. Z.; Xiong, W. J.; Xia, X. J. Autophagy regulation of mammalian immune cells. Adv. Exp. Med. Biol. 2019, 1209, 7–22.
Romao, S.; Gannage, M.; Münz, C. Checking the garbage bin for problems in the house, or how autophagy assists in antigen presentation to the immune system. Semin. Cancer Biol. 2013, 23, 391–396.
Rubinsztein, D. C.; Codogno, P.; Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 2012, 11, 709–730.
Xia, H. J.; Green, D. R.; Zou, W. P. Autophagy in tumour immunity and therapy. Nat. Rev. Cancer 2021, 21, 281–297.
Wang, X. H.; Li, M.; Ren, K. B.; Xia, C. Y.; Li, J. P.; Yu, Q. W.; Qiu, Y.; Lu, Z. Z.; Long, Y.; Zhang, Z. R. et al. On-demand autophagy cascade amplification nanoparticles precisely enhanced oxaliplatin-induced cancer immunotherapy. Adv. Mater. 2020, 32, 2002160.
Li, Z. L.; Zhang, H. L.; Huang, Y.; Huang, J. H.; Sun, P.; Zhou, N. N.; Chen, Y. H.; Mai, J.; Wang, Y.; Yu, Y. et al. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat. Commun. 2020, 11, 3806.
Li, J. H.; Sharkey, C. C.; Wun, B.; Liesveld, J. L.; King, M. R. Genetic engineering of platelets to neutralize circulating tumor cells. J. Control. Release 2016, 228, 38–47.
Li, J. H.; Ai, Y. W.; Wang, L. H.; Bu, P. C.; Sharkey, C. C.; Wu, Q. H.; Wun, B.; Roy, S.; Shen, X. L.; King, M. R. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials 2016, 76, 52–65.
Zhang, X. D.; Wang, J. Q.; Chen, Z. W.; Hu, Q. Y.; Wang, C.; Yan, J. J.; Dotti, G.; Huang, P.; Gu, Z. Engineering PD-1-presenting platelets for cancer immunotherapy. Nano Lett. 2018, 18, 5716–5725.
Wang, C.; Sun, W. J.; Ye, Y. Q.; Hu, Q. Y.; Bomba, H. N.; Gu, Z. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 2017, 1, 0011.
Hu, Q. Y.; Li, H. J.; Archibong, E.; Chen, Q.; Ruan, H. T.; Ahn, S.; Dukhovlinova, E.; Kang, Y.; Wen, D.; Dotti, G. et al. Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nat. Biomed. Eng 2021, 5, 1038–1047.
Li, Z. T.; Ding, Y. Y.; Liu, J.; Wang, J. X.; Mo, F. Y.; Wang, Y. X.; Chen-Mayfield, T. J.; Sondel, P. M.; Hong, S.; Hu, Q. Y. Depletion of tumor associated macrophages enhances local and systemic platelet-mediated anti-PD-1 delivery for post-surgery tumor recurrence treatment. Nat. Commun. 2022, 13, 1845.
Hu, Q. Y.; Sun, W. J.; Wang, J. Q.; Ruan, H. T.; Zhang, X. D.; Ye, Y. Q.; Shen, S.; Wang, C.; Lu, W. Y.; Cheng, K. et al. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nat. Biomed. Eng. 2018, 2, 831–840.
Wang, Y. X.; Li, Z. T.; Mo, F. Y.; Gu, Z.; Hu, Q. Y. Engineered platelets: Advocates for tumor immunotherapy. Nano Today 2021, 40, 101281.
Semple, J. W.; Italiano, J. E.; Freedman, J. Platelets and the immune continuum. Nat. Rev. Immunol. 2011, 11, 264–274.
Schlesinger, M. Role of platelets and platelet receptors in cancer metastasis. J. Hematol. Oncol. 2018, 11, 125.
Wang, Y. X.; Li, W.; Li, Z. T.; Mo, F. Y.; Chen, Y.; Iida, M.; Wheeler, D. L.; Hu, Q. Y. Active recruitment of anti-PD-1-conjugated platelets through tumor-selective thrombosis for enhanced anticancer immunotherapy. Sci. Adv. 2023, 9, eadf6854.
Van Der Meijden, P. E. J.; Heemskerk, J. W. M. Platelet biology and functions: New concepts and clinical perspectives. Nat. Rev. Cardiol. 2019, 16, 166–179.
Linden, M. D. Platelet physiology. Methods Mol. Biol. 2013, 992, 13–30.
Algahtani, M.; Heptinstall, S. Novel strategies for assessing platelet reactivity. Future Cardiol. 2017, 13, 33–47.
Chatterjee, S. Endothelial mechanotransduction, redox signaling and the regulation of vascular inflammatory pathways. Front. Physiol. 2018, 9, 524.
Franco, A. T.; Corken, A.; Ware, J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood 2015, 126, 582–588.
Kailashiya, J. Platelet-derived microparticles analysis: Techniques, challenges and recommendations. Anal. Biochem. 2018, 546, 78–85.
Merten, M.; Pakala, R.; Thiagarajan, P.; Benedict, C. R. Platelet microparticles promote platelet interaction with subendothelial matrix in a glycoprotein IIb/IIIa-dependent mechanism. Circulation 1999, 99, 2577–2582.
Nakatogawa, H. Mechanisms governing autophagosome biogenesis. Nat. Rev. Mol. Cell Biol. 2020, 21, 439–458.
Ni, H. M.; Bockus, A.; Wozniak, A. L.; Jones, K.; Weinman, S.; Yin, X. M.; Ding, W. X. Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Autophagy 2011, 7, 188–204.
Pankiv, S.; Clausen, T. H.; Lamark, T.; Brech, A.; Bruun, J. A.; Outzen, H.; Overvatn, A.; Bjorkoy, G.; Johansen, T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 2007, 282, 24131–24145.
Schaaf, M. B. E.; Keulers, T. G.; Vooijs, M. A.; Rouschop, K. M. A. LC3/GABARAP family proteins: Autophagy-(un)related functions. FASEB J. 2016, 30, 3961–3978.
Munafo, D. B.; Colombo, M. I. A novel assay to study autophagy: Regulation of autophagosome vacuole size by amino acid deprivation. J. Cell Sci. 2001, 114, 3619–3629.
Schmid, D.; Pypaert, M.; Münz, C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 2007, 26, 79–92.
Fiegl, D.; Kägebein, D.; Liebler-Tenorio, E. M.; Weisser, T.; Sens, M.; Gutjahr, M.; Knittler, M. R. Amphisomal route of MHC class I cross-presentation in bacteria-infected dendritic cells. J. Immunol. 2013, 190, 2791–2806.
Lee, Y. S.; Radford, K. J. The role of dendritic cells in cancer. Int. Rev. Cell Mol. Biol. 2019, 348, 123–178.
Ciesielska, A.; Matyjek, M.; Kwiatkowska, K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell. Mol. Life Sci. 2021, 78, 1233–1261.
Singh, B.; Bhaskar, S. Methods for detection of autophagy in mammalian cells. Methods Mol. Biol. 2019, 2045, 245–258.
Alshamsan, A.; Hamdy, S.; Das, S. D. S.; Lavasanifar, A.; Samuel, J.; El-Kadi, A. O. S. Validation of bone marrow derived dendritic cells as an appropriate model to study tumor-mediated suppression of DC maturation through STAT3 hyperactivation. J. Pharm. Pharm. Sci. 2010, 13, 21–26.
Li, P.; Zhang, H.; Ji, L. N.; Wang, Z. A review of clinical and preclinical studies on therapeutic strategies using interleukin-12 in cancer therapy and the protective role of interleukin-12 in hematological recovery in chemoradiotherapy. Med. Sci. Monit. 2020, 26, e923855.
Kocaturk, N. M.; Akkoc, Y.; Kig, C.; Bayraktar, O.; Gozuacik, D.; Kutlu, O. Autophagy as a molecular target for cancer treatment. Eur. J. Pharm. Sci. 2019, 134, 116–137.
Bu, L. L.; Yan, J. J.; Wang, Z. J.; Ruan, H. T.; Chen, Q.; Gunadhi, V.; Bell, R. B.; Gu, Z. Advances in drug delivery for post-surgical cancer treatment. Biomaterials 2019, 219, 119182.
Zhang, Y. W.; Jiang, C. Postoperative cancer treatments: In-situ delivery system designed on demand. J. Control. Release 2021, 330, 554–564.
Binnewies, M.; Roberts, E. W.; Kersten, K.; Chan, V.; Fearon, D. F.; Merad, M.; Coussens, L. M.; Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Hedrick, C. C. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550.
Trujillo, J. A.; Sweis, R. F.; Bao, R. Y.; Luke, J. J. T cell-inflamed versus non-T cell-inflamed tumors: A conceptual framework for cancer immunotherapy drug development and combination therapy selection. Cancer Immunol. Res. 2018, 6, 990–1000.
Lee, N.; Zakka, L. R.; Mihm, M. C. Jr.; Schatton, T. Tumour-infiltrating lymphocytes in melanoma prognosis and cancer immunotherapy. Pathology 2016, 48, 177–187.
Schroeder, A.; Heller, D. A.; Winslow, M. M.; Dahlman, J. E.; Pratt, G. W.; Langer, R.; Jacks, T.; Anderson, D. G. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 2012, 12, 39–50.
Altorki, N. K.; Markowitz, G. J.; Gao, D. C.; Port, J. L.; Saxena, A.; Stiles, B.; McGraw, T.; Mittal, V. The lung microenvironment: An important regulator of tumour growth and metastasis. Nat. Rev. Cancer 2019, 19, 9–31.
Alissafi, T.; Hatzioannou, A.; Mintzas, K.; Barouni, R. M.; Banos, A.; Sormendi, S.; Polyzos, A.; Xilouri, M.; Wielockx, B.; Gogas, H. et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J. Clin. Invest. 2018, 128, 3840–3852.