AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Anion-derived solid electrolyte interphase realized in usual-concentration electrolyte for Li metal batteries

Zhimeng Hao1Geng Li1,2Yong Lu1Yichao Cai1Gaojing Yang1Jun Chen1( )
Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
National Supercomputer Center in Tianjin, Tianjin 300457, China
Show Author Information

Graphical Abstract

The ratio of anions in the primary solvation sheath of Li+ can be improved by employing a solvent with low donor number, 2-methyltetrahydrofuran (MTHF), inducing an anion-derived solid electrolyte interphase. As a result, the Li metal anodes and the corresponding full batteries in MTHF based electrolyte display high reversibility and good performance.

Abstract

Constructing anion-derived solid electrolyte interphase (SEI) by recruiting anions into the solvation sheath of Li+ is extremely conducive to restrain the dendrite growth of Li metal anode. However, the presence of anions in the solvation sheath of Li+ is severely hindered by the solvents with strong coordinating ability in conventional electrolyte. Herein, we boost the content of anions in the primary solvation sheath of Li+ by employing a solvent with low donor number, 2-methyltetrahydrofuran, inducing an anion-derived SEI. As a result, the Li||Cu cells show a high average Coulombic efficiency (> 99%) over 500 cycles and the Li||LiFePO4 cells under a low negative/positive capacity ratio of 2:1 exhibit an impressive capacity retention of 90% after 100 cycles. This work provides insights on constructing stable anion-derived SEI and offers guidance in designing electrolytes for stable Li metal batteries.

Electronic Supplementary Material

Download File(s)
12274_2023_5937_MOESM1_ESM.pdf (6.3 MB)

References

[1]

Hao, Z. M.; Zhang, Y. F.; Hao, Z. K.; Li, G.; Lu, Y.; Jin, S.; Yang, G. J.; Zhang, S. H.; Yan, Z. H.; Zhao, Q. et al. Metal anodes with ultrahigh reversibility enabled by the closest packing crystallography for sustainable batteries. Adv. Mater. 2023, 35, 2209985.

[2]

Zhao, Q.; Stalin, S.; Archer, L. A. Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 2021, 5, 1119–1142.

[3]

Cao, W. Z.; Li, Q.; Yu, X. Q.; Li, H. Controlling Li deposition below the interface. eScience 2022, 2, 47–78.

[4]

Wang, J.; Yin, Y. B.; Liu, T.; Yang, X. Y.; Chang, Z. W.; Zhang, X. B. Hybrid electrolyte with robust garnet-ceramic electrolyte for lithium anode protection in lithium-oxygen batteries. Nano Res. 2018, 11, 3434–3441.

[5]

Zheng, J. X.; Kim, M. S.; Tu, Z. Y.; Choudhury, S.; Tang, T.; Archer, L. A. Regulating electrodeposition morphology of lithium: Towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 2020, 49, 2701–2750.

[6]

Liu, H.; Sun, X.; Cheng, X. B.; Guo, C.; Yu, F.; Bao, W. Z.; Wang, T.; Li, J. F.; Zhang, Q. Working principles of lithium metal anode in pouch cells. Adv. Energy Mater. 2022, 12, 2202518.

[7]

Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114.

[8]

Zhang, J. M.; Zeng, Y. P.; Li, Q. P.; Tang, Z.; Sun, D.; Huang, D.; Zhao, L.; Tang, Y. G.; Wang, H. Y. Polymer-in-salt electrolyte enables ultrahigh ionic conductivity for advanced solid-state lithium metal batteries. Energy Storage Mater. 2023, 54, 440–449.

[9]

Zhang, J. M.; Li, Q. P.; Zeng, Y. P.; Tang, Z.; Sun, D.; Huang, D.; Peng, Z. G.; Tang, Y. G.; Wang, H. Y. Non-flammable ultralow concentration mixed ether electrolyte for advanced lithium metal batteries. Energy Storage Mater. 2022, 51, 660–670.

[10]

Yao, Y. X.; Chen, X.; Yan, C.; Zhang, X. Q.; Cai, W. L.; Huang, J. Q.; Zhang, Q. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem., Int. Ed. 2021, 60, 4090–4097.

[11]

Wang, Z. X.; Qi, F. L.; Yin, L. C.; Shi, Y.; Sun, C. G.; An, B. G.; Cheng, H. M.; Li, F. An anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes. Adv. Energy Mater. 2020, 10, 1903843.

[12]

Ding, J. F.; Xu, R.; Yao, N.; Chen, X.; Xiao, Y.; Yao, Y. X.; Yan, C.; Xie, J.; Huang, J. Q. Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 11442–11447.

[13]

Yuan, S. Y.; Kong, T. Y.; Zhang, Y. Y.; Dong, P.; Zhang, Y. J.; Dong, X. L.; Wang, Y. G.; Xia, Y. Y. Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions. Angew. Chem., Int. Ed. 2021, 60, 25624–25638.

[14]

Yang, G. J.; Li, Y. J.; Liu, S.; Zhang, S. M.; Wang, Z. X.; Chen, L. Q. LiFSI to improve lithium deposition in carbonate electrolyte. Energy Storage Mater. 2019, 23, 350–357.

[15]

Wang, H. P.; Liu, J. D.; He, J.; Qi, S. H.; Wu, M. G.; Li, F.; Huang, J. D.; Huang, Y.; Ma, J. M. Pseudo-concentrated electrolytes for lithium metal batteries. eScience 2022, 2, 557–565.

[16]

Borodin, O.; Self, J.; Persson, K. A.; Wang, C. S.; Xu, K. Uncharted waters: Super-concentrated electrolytes. Joule 2020, 4, 69–100.

[17]

Pan, A. R.; Wang, Z. C.; Zhang, F. R.; Wang, L.; Xu, J. J.; Zheng, J. Y.; Hu, J. C.; Zhao, C. L.; Wu, X. D. Wide-temperature range and high safety electrolytes for high-voltage Li-metal batteries. Nano Res. 2023, 16, 8260–8268.

[18]

Zhang, Q. K.; Zhang, X. Q.; Hou, L. P.; Sun, S. Y.; Zhan, Y. X.; Liang, J. L.; Zhang, F. S.; Feng, X. N.; Li, B. Q.; Huang, J. Q. Regulating solvation structure in nonflammable amide-based electrolytes for long-cycling and safe lithium metal batteries. Adv. Energy Mater. 2022, 12, 2200139.

[19]

Ren, X. D.; Zou, L. F.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C. J.; Matthews, B. E.; Zhu, Z. H. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 2019, 3, 1662–1676.

[20]

Kim, M. S.; Zhang, Z. W.; Wang, J. Y.; Oyakhire, S. T.; Kim, S. C.; Yu, Z. A.; Chen, Y. L.; Boyle, D. T.; Ye, Y. S.; Huang, Z. J. et al. Revealing the multifunctions of Li3N in the suspension electrolyte for lithium metal batteries. ACS Nano 2023, 17, 3168–3180.

[21]

Wang, Q. D.; Yao, Z. P.; Zhao, C. L.; Verhallen, T.; Tabor, D. P.; Liu, M.; Ooms, F.; Kang, F.; Aspuru-Guzik, A.; Hu, Y. S. et al. Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nat. Commun. 2020, 11, 4188.

[22]

Cai, Y. C.; Zhang, Q.; Lu, Y.; Hao, Z. M.; Ni, Y. X.; Chen, J. An ionic liquid electrolyte with enhanced Li+ transport ability enables stable Li deposition for high-performance Li-O2 batteries. Angew. Chem., Int. Ed. 2021, 60, 25973–25980.

[23]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[24]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[25]

Harl, J.; Schimka, L.; Kresse, G. Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids. Phys. Rev. B 2010, 81, 115126.

[26]

Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697.

[27]

Johnson, L.; Li, C. M.; Liu, Z.; Chen, Y. H.; Freunberger, S. A.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Tarascon, J. M.; Bruce, P. G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat. Chem. 2014, 6, 1091–1099.

[28]

Erlich, R. H.; Popov, A. I. Spectroscopic studies of ionic solvation. X. Study of the solvation of sodium ions in nonaqueous solvents by sodium-23 nuclear magnetic resonance. J. Am. Chem. Soc. 1971, 93, 5620–5623.

[29]

Ko, S.; Obukata, T.; Shimada, T.; Takenaka, N.; Nakayama, M.; Yamada, A.; Yamada, Y. Electrode potential influences the reversibility of lithium-metal anodes. Nat. Energy 2022, 7, 1217–1224.

[30]

Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5039–5046.

[31]

Zhou, X. Z.; Zhang, Q.; Zhu, Z.; Cai, Y. C.; Li, H. X.; Li, F. J. Anion-reinforced solvation for a gradient inorganic-rich interphase enables high-rate and stable sodium batteries. Angew. Chem., Int. Ed. 2022, 61, e202205045.

[32]

Pang, Q.; Shyamsunder, A.; Narayanan, B.; Kwok, C. Y.; Curtiss, L. A.; Nazar, L. F. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat. Energy 2018, 3, 783–791.

[33]

Bogle, X.; Vazquez, R.; Greenbaum, S.; von Wald Cresce, A.; Xu, K. Understanding Li+-solvent interaction in nonaqueous carbonate electrolytes with 17O NMR. J. Phys. Chem. Lett. 2013, 4, 1664–1648.

[34]

Chen, J.; Fan, X. L.; Li, Q.; Yang, H. B.; Khoshi, M. R.; Xu, Y. B.; Hwang, S.; Chen, L.; Ji, X.; Yang, C. Y. et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 2020, 5, 386–397.

[35]

Ma, T.; Ni, Y. X.; Wang, Q. R.; Zhang, W. J.; Jin, S.; Zheng, S. B.; Yang, X.; Hou, Y. P.; Tao, Z. L.; Chen, J. Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem., Int. Ed. 2022, 61, e202207927.

[36]

Yang, G. J.; Zhang, S. M.; Weng, S. T.; Li, X. Y.; Wang, X. F.; Wang, Z. X.; Chen, L. Q. Anionic effect on enhancing the stability of a solid electrolyte interphase film for lithium deposition on graphite. Nano Lett. 2021, 21, 5316–5323.

[37]

Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503–11618.

[38]

Cao, X.; Ren, X. D.; Zou, L. F.; Engelhard, M. H.; Huang, W.; Wang, H. S.; Matthews, B. E.; Lee, H.; Niu, C. J.; Arey, B. W. et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 2019, 4, 796–805.

[39]

Zhang, Q.; Lu, Y. Y.; Miao, L. C.; Zhao, Q.; Xia, K. X.; Liang, J.; Chou, S. L.; Chen, J. An alternative to lithium metal anodes: Non-dendritic and highly reversible sodium metal anodes for Li-Na hybrid batteries. Angew. Chem., Int. Ed. 2018, 57, 14796–14800.

[40]

Adams, B. D.; Zheng, J. M.; Ren, X. D.; Xu, W.; Zhang, J. G. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 2018, 8, 1702097.

[41]

Xu, R.; Ding, J. F.; Ma, X. X.; Yan, C.; Yao, Y. X.; Huang, J. Q. Designing and demystifying the lithium metal interface toward highly reversible batteries. Adv. Mater. 2021, 33, 2105962.

[42]

Zhang, J. M.; Li, Q. P.; Zeng, Y. P.; Tang, Z.; Sun, D.; Huang, D.; Tang, Y. G.; Wang, H. Y. Weakly solvating cyclic ether electrolyte for high-voltage lithium metal batteries. ACS Energy Lett. 2023, 8, 1752–1761.

Nano Research
Pages 12647-12654
Cite this article:
Hao Z, Li G, Lu Y, et al. Anion-derived solid electrolyte interphase realized in usual-concentration electrolyte for Li metal batteries. Nano Research, 2023, 16(11): 12647-12654. https://doi.org/10.1007/s12274-023-5937-y
Topics:

666

Views

4

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 18 April 2023
Revised: 15 June 2023
Accepted: 15 June 2023
Published: 26 July 2023
© Tsinghua University Press 2023
Return