Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Constructing anion-derived solid electrolyte interphase (SEI) by recruiting anions into the solvation sheath of Li+ is extremely conducive to restrain the dendrite growth of Li metal anode. However, the presence of anions in the solvation sheath of Li+ is severely hindered by the solvents with strong coordinating ability in conventional electrolyte. Herein, we boost the content of anions in the primary solvation sheath of Li+ by employing a solvent with low donor number, 2-methyltetrahydrofuran, inducing an anion-derived SEI. As a result, the Li||Cu cells show a high average Coulombic efficiency (> 99%) over 500 cycles and the Li||LiFePO4 cells under a low negative/positive capacity ratio of 2:1 exhibit an impressive capacity retention of 90% after 100 cycles. This work provides insights on constructing stable anion-derived SEI and offers guidance in designing electrolytes for stable Li metal batteries.
Hao, Z. M.; Zhang, Y. F.; Hao, Z. K.; Li, G.; Lu, Y.; Jin, S.; Yang, G. J.; Zhang, S. H.; Yan, Z. H.; Zhao, Q. et al. Metal anodes with ultrahigh reversibility enabled by the closest packing crystallography for sustainable batteries. Adv. Mater. 2023, 35, 2209985.
Zhao, Q.; Stalin, S.; Archer, L. A. Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 2021, 5, 1119–1142.
Cao, W. Z.; Li, Q.; Yu, X. Q.; Li, H. Controlling Li deposition below the interface. eScience 2022, 2, 47–78.
Wang, J.; Yin, Y. B.; Liu, T.; Yang, X. Y.; Chang, Z. W.; Zhang, X. B. Hybrid electrolyte with robust garnet-ceramic electrolyte for lithium anode protection in lithium-oxygen batteries. Nano Res. 2018, 11, 3434–3441.
Zheng, J. X.; Kim, M. S.; Tu, Z. Y.; Choudhury, S.; Tang, T.; Archer, L. A. Regulating electrodeposition morphology of lithium: Towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 2020, 49, 2701–2750.
Liu, H.; Sun, X.; Cheng, X. B.; Guo, C.; Yu, F.; Bao, W. Z.; Wang, T.; Li, J. F.; Zhang, Q. Working principles of lithium metal anode in pouch cells. Adv. Energy Mater. 2022, 12, 2202518.
Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114.
Zhang, J. M.; Zeng, Y. P.; Li, Q. P.; Tang, Z.; Sun, D.; Huang, D.; Zhao, L.; Tang, Y. G.; Wang, H. Y. Polymer-in-salt electrolyte enables ultrahigh ionic conductivity for advanced solid-state lithium metal batteries. Energy Storage Mater. 2023, 54, 440–449.
Zhang, J. M.; Li, Q. P.; Zeng, Y. P.; Tang, Z.; Sun, D.; Huang, D.; Peng, Z. G.; Tang, Y. G.; Wang, H. Y. Non-flammable ultralow concentration mixed ether electrolyte for advanced lithium metal batteries. Energy Storage Mater. 2022, 51, 660–670.
Yao, Y. X.; Chen, X.; Yan, C.; Zhang, X. Q.; Cai, W. L.; Huang, J. Q.; Zhang, Q. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem., Int. Ed. 2021, 60, 4090–4097.
Wang, Z. X.; Qi, F. L.; Yin, L. C.; Shi, Y.; Sun, C. G.; An, B. G.; Cheng, H. M.; Li, F. An anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes. Adv. Energy Mater. 2020, 10, 1903843.
Ding, J. F.; Xu, R.; Yao, N.; Chen, X.; Xiao, Y.; Yao, Y. X.; Yan, C.; Xie, J.; Huang, J. Q. Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 11442–11447.
Yuan, S. Y.; Kong, T. Y.; Zhang, Y. Y.; Dong, P.; Zhang, Y. J.; Dong, X. L.; Wang, Y. G.; Xia, Y. Y. Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions. Angew. Chem., Int. Ed. 2021, 60, 25624–25638.
Yang, G. J.; Li, Y. J.; Liu, S.; Zhang, S. M.; Wang, Z. X.; Chen, L. Q. LiFSI to improve lithium deposition in carbonate electrolyte. Energy Storage Mater. 2019, 23, 350–357.
Wang, H. P.; Liu, J. D.; He, J.; Qi, S. H.; Wu, M. G.; Li, F.; Huang, J. D.; Huang, Y.; Ma, J. M. Pseudo-concentrated electrolytes for lithium metal batteries. eScience 2022, 2, 557–565.
Borodin, O.; Self, J.; Persson, K. A.; Wang, C. S.; Xu, K. Uncharted waters: Super-concentrated electrolytes. Joule 2020, 4, 69–100.
Pan, A. R.; Wang, Z. C.; Zhang, F. R.; Wang, L.; Xu, J. J.; Zheng, J. Y.; Hu, J. C.; Zhao, C. L.; Wu, X. D. Wide-temperature range and high safety electrolytes for high-voltage Li-metal batteries. Nano Res. 2023, 16, 8260–8268.
Zhang, Q. K.; Zhang, X. Q.; Hou, L. P.; Sun, S. Y.; Zhan, Y. X.; Liang, J. L.; Zhang, F. S.; Feng, X. N.; Li, B. Q.; Huang, J. Q. Regulating solvation structure in nonflammable amide-based electrolytes for long-cycling and safe lithium metal batteries. Adv. Energy Mater. 2022, 12, 2200139.
Ren, X. D.; Zou, L. F.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C. J.; Matthews, B. E.; Zhu, Z. H. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 2019, 3, 1662–1676.
Kim, M. S.; Zhang, Z. W.; Wang, J. Y.; Oyakhire, S. T.; Kim, S. C.; Yu, Z. A.; Chen, Y. L.; Boyle, D. T.; Ye, Y. S.; Huang, Z. J. et al. Revealing the multifunctions of Li3N in the suspension electrolyte for lithium metal batteries. ACS Nano 2023, 17, 3168–3180.
Wang, Q. D.; Yao, Z. P.; Zhao, C. L.; Verhallen, T.; Tabor, D. P.; Liu, M.; Ooms, F.; Kang, F.; Aspuru-Guzik, A.; Hu, Y. S. et al. Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nat. Commun. 2020, 11, 4188.
Cai, Y. C.; Zhang, Q.; Lu, Y.; Hao, Z. M.; Ni, Y. X.; Chen, J. An ionic liquid electrolyte with enhanced Li+ transport ability enables stable Li deposition for high-performance Li-O2 batteries. Angew. Chem., Int. Ed. 2021, 60, 25973–25980.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Harl, J.; Schimka, L.; Kresse, G. Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids. Phys. Rev. B 2010, 81, 115126.
Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697.
Johnson, L.; Li, C. M.; Liu, Z.; Chen, Y. H.; Freunberger, S. A.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Tarascon, J. M.; Bruce, P. G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat. Chem. 2014, 6, 1091–1099.
Erlich, R. H.; Popov, A. I. Spectroscopic studies of ionic solvation. X. Study of the solvation of sodium ions in nonaqueous solvents by sodium-23 nuclear magnetic resonance. J. Am. Chem. Soc. 1971, 93, 5620–5623.
Ko, S.; Obukata, T.; Shimada, T.; Takenaka, N.; Nakayama, M.; Yamada, A.; Yamada, Y. Electrode potential influences the reversibility of lithium-metal anodes. Nat. Energy 2022, 7, 1217–1224.
Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5039–5046.
Zhou, X. Z.; Zhang, Q.; Zhu, Z.; Cai, Y. C.; Li, H. X.; Li, F. J. Anion-reinforced solvation for a gradient inorganic-rich interphase enables high-rate and stable sodium batteries. Angew. Chem., Int. Ed. 2022, 61, e202205045.
Pang, Q.; Shyamsunder, A.; Narayanan, B.; Kwok, C. Y.; Curtiss, L. A.; Nazar, L. F. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat. Energy 2018, 3, 783–791.
Bogle, X.; Vazquez, R.; Greenbaum, S.; von Wald Cresce, A.; Xu, K. Understanding Li+-solvent interaction in nonaqueous carbonate electrolytes with 17O NMR. J. Phys. Chem. Lett. 2013, 4, 1664–1648.
Chen, J.; Fan, X. L.; Li, Q.; Yang, H. B.; Khoshi, M. R.; Xu, Y. B.; Hwang, S.; Chen, L.; Ji, X.; Yang, C. Y. et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 2020, 5, 386–397.
Ma, T.; Ni, Y. X.; Wang, Q. R.; Zhang, W. J.; Jin, S.; Zheng, S. B.; Yang, X.; Hou, Y. P.; Tao, Z. L.; Chen, J. Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem., Int. Ed. 2022, 61, e202207927.
Yang, G. J.; Zhang, S. M.; Weng, S. T.; Li, X. Y.; Wang, X. F.; Wang, Z. X.; Chen, L. Q. Anionic effect on enhancing the stability of a solid electrolyte interphase film for lithium deposition on graphite. Nano Lett. 2021, 21, 5316–5323.
Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503–11618.
Cao, X.; Ren, X. D.; Zou, L. F.; Engelhard, M. H.; Huang, W.; Wang, H. S.; Matthews, B. E.; Lee, H.; Niu, C. J.; Arey, B. W. et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 2019, 4, 796–805.
Zhang, Q.; Lu, Y. Y.; Miao, L. C.; Zhao, Q.; Xia, K. X.; Liang, J.; Chou, S. L.; Chen, J. An alternative to lithium metal anodes: Non-dendritic and highly reversible sodium metal anodes for Li-Na hybrid batteries. Angew. Chem., Int. Ed. 2018, 57, 14796–14800.
Adams, B. D.; Zheng, J. M.; Ren, X. D.; Xu, W.; Zhang, J. G. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 2018, 8, 1702097.
Xu, R.; Ding, J. F.; Ma, X. X.; Yan, C.; Yao, Y. X.; Huang, J. Q. Designing and demystifying the lithium metal interface toward highly reversible batteries. Adv. Mater. 2021, 33, 2105962.
Zhang, J. M.; Li, Q. P.; Zeng, Y. P.; Tang, Z.; Sun, D.; Huang, D.; Tang, Y. G.; Wang, H. Y. Weakly solvating cyclic ether electrolyte for high-voltage lithium metal batteries. ACS Energy Lett. 2023, 8, 1752–1761.