AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Confinement of Fe atoms between MoS2 interlayers drives phase transition for improved reactivity in Fenton-like reactions

Yibing Sun1,§Yu Zhou2,§Hongchao Li1,§Chuan Wang1Xuan Zhang1Qian Ma3( )Yingchun Cheng2( )Jieshu Qian1,4( )Bingcai Pan4
Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
Department of General Dentistry, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
Research Center for Environmental Nanotechnology (ReCENT), State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China

§ Yibing Sun, Yu Zhou, and Hongchao Li contributed equally to this work.

Show Author Information

Graphical Abstract

Interlayered Fe confinement of MoS2 drives the transformation from 2H to 1T phase, and the confinement of Fe atoms enhances the reactivity of MoS2 in Fenton-like reaction by activating inert basal planes and adding new active sites. Fe-confined MoS2 also shows enhanced reactivity in hydrogen evolution reaction.

Abstract

Phase manipulation of MoS2 from thermodynamically stable 2H phase to the unstable but more reactive 1T phase represents a crucial strategy for improving the reactivity in many reactions. The widely adopted wet chemistry approach uses intercalating entities especially alkali metal ions to achieve the phase transition; however, these entities are normally inert for the target reaction. Here, we describe the first use of iron atoms for the intercalation of 2H-MoS2 layers, driving the partial transition from 2H to 1T phase. Interestingly, in the peroxymonosulfate (PMS)-based Fenton-like reactions, the interlayered confinement of Fe atoms not only activates the inert basal plane, but also adds more reactive Fe sites for the formation of metal-PMS complex as primary reactive species for pollutant removal. In the degradation of a model pollutant carbamazepine (CBZ), the Fe-intercalated MoS2 exhibits a first order rate constant 13.3 times higher than 2H-MoS2. This strategy is a new direction for manipulating the phase composition and boosting the catalytic reactivity of MoS2-based catalysts in various scenarios, including environmental remediation and energy applications.

Electronic Supplementary Material

Download File(s)
12274_2023_5938_MOESM1_ESM.pdf (2.8 MB)

References

[1]

Li, W. S.; Gong, X. S.; Yu, Z. H.; Ma, L.; Sun, W. J.; Gao, S.; Köroğlu, Ç.; Wang, W. F.; Liu, L.; Li, T. T. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 2023, 613, 274–279.

[2]

Jang, J.; Kim, J. K.; Shin, J.; Kim, J.; Baek, K. Y.; Park, J.; Park, S.; Kim, Y. D.; Parkin, S. S. P.; Kang, K. et al. Reduced dopant-induced scattering in remote charge-transfer-doped MoS2 field-effect transistors. Sci. Adv. 2022, 8, eabn3181.

[3]

Bo, Z.; Cheng, X. N.; Yang, H. C.; Guo, X. Z.; Yan, J. H.; Cen, K. F.; Han, Z. J.; Dai, L. M. Ultrathick MoS2 films with exceptionally high volumetric capacitance. Adv. Energy Mater. 2022, 12, 2103394.

[4]

Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. T.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.

[5]

Xu, J.; Shao, G. L.; Tang, X.; Lv, F.; Xiang, H. Y.; Jing, C. F.; Liu, S.; Dai, S.; Li, Y. G.; Luo, J. et al. Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nat. Commun. 2022, 13, 2193.

[6]

Hong, S.; Zagni, N.; Choo, S.; Liu, N.; Baek, S.; Bala, A.; Yoo, H.; Kang, B. H.; Kim, H. J.; Yun, H. J. et al. Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry. Nat. Commun. 2021, 12, 3559.

[7]

Yan, Q. Y.; Lian, C.; Huang, K.; Liang, L. H.; Yu, H. R.; Yin, P. C.; Zhang, J. L.; Xing, M. Y. Constructing an acidic microenvironment by MoS2 in heterogeneous Fenton reaction for pollutant control. Angew. Chem., Int. Ed. 2021, 60, 17155–17163.

[8]

Yang, J. C. E.; Zhu, M. P.; Duan, X. G.; Wang, S. B.; Yuan, B. L.; Fu, M. L. The mechanistic difference of 1T-2H MoS2 homojunctions in persulfates activation: Structure-dependent oxidation pathways. Appl. Catal. B: Environ. 2021, 297, 120460.

[9]

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

[10]

Deng, S. J.; Luo, M.; Ai, C. Z.; Zhang, Y.; Liu, B.; Huang, L.; Jiang, Z.; Zhang, Q. H.; Gu, L.; Lin, S. W. et al. Synergistic doping and intercalation: Realizing deep phase modulation on MoS2 arrays for high-efficiency hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16289–16296.

[11]

Pető, J.; Ollár, T.; Vancsó, P.; Popov, Z. I.; Magda, G. Z.; Dobrik, G.; Hwang, C.; Sorokin, P. B.; Tapasztó, L. Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions. Nat. Chem. 2018, 10, 1246–1251.

[12]

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

[13]

Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313–318.

[14]

Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

[15]

Lei, Z. D.; Zhan, J.; Tang, L.; Zhang, Y.; Wang, Y. Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage. Adv. Energy Mater. 2018, 8, 1703482.

[16]

Kochat, V.; Apte, A.; Hachtel, J. A.; Kumazoe, H.; Krishnamoorthy, A.; Susarla, S.; Idrobo, J. C.; Shimojo, F.; Vashishta, P.; Kalia, R. et al. Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv. Mater. 2017, 29, 1703754.

[17]

He, H. N.; Li, X. L.; Huang, D.; Luan, J. Y.; Liu, S. L.; Pang, W. K.; Sun, D.; Tang, Y. G.; Zhou, W. Z.; He, L. R. et al. Electron-injection-engineering induced phase transition toward stabilized 1T-MoS2 with extraordinary sodium storage performance. ACS Nano 2021, 15, 8896–8906.

[18]

Tan, C. L.; Luo, Z. M.; Chaturvedi, A.; Cai, Y. Q.; Du, Y. H.; Gong, Y.; Huang, Y.; Lai, Z. C.; Zhang, X.; Zheng, L. R. et al. Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1705509.

[19]

Wang, X. F.; Shen, X.; Wang, Z. X.; Yu, R. C.; Chen, L. Q. Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation. ACS Nano 2014, 8, 11394–11400.

[20]

Park, S.; Kim, C.; Park, S. O.; Oh, N. K.; Kim, U.; Lee, J.; Seo, J.; Yang, Y. J.; Lim, H. Y.; Kwak, S. K. et al. Phase engineering of transition metal dichalcogenides with unprecedentedly high phase purity, stability, and scalability via molten-metal-assisted intercalation. Adv. Mater. 2020, 32, 2001889.

[21]

Fenton, H. J. H. LXXIII.—Oxidation of tartaric acid in presence of iron. J. Chem. Soc., Trans 1894, 65, 899–910.

[22]

Lee, J. W.; Helmann, J. D. The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 2006, 440, 363–367.

[23]

Yang, B. W.; Chen, Y.; Shi, J. L. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881–4985.

[24]

Chen, M. S.; White, M. C. A predictably selective aliphatic C-H oxidation reaction for complex molecule synthesis. Science 2007, 318, 783–787.

[25]

Feng, G. D.; Cheng, P.; Yan, W. F.; Boronat, M.; Li, X.; Su, J. H.; Wang, J. Y.; Li, Y.; Corma, A.; Xu, R. R. et al. Accelerated crystallization of zeolites via hydroxyl free radicals. Science 2016, 351, 1188–1191.

[26]

Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental implications of hydroxyl radicals (OH). Chem. Rev. 2015, 115, 13051–13092.

[27]

Eisenhauer, H. R. Oxidation of phenolic wastes. Water Pollut. Control Fed. 1964, 36, 1116–1128.

[28]

Lewis, R. J.; Ueura, K.; Liu, X.; Fukuta, Y.; Davies, T. E.; Morgan, D. J.; Chen, L. W.; Qi, J. Z.; Singleton, J.; Edwards, J. K. et al. Highly efficient catalytic production of oximes from ketones using in situ-generated H2O2. Science 2022, 376, 615–620.

[29]

Huang, M. J.; Li, Y. S.; Zhang, C. Q.; Cui, C.; Huang, Q. Q.; Li, M. K.; Qiang, Z. M.; Zhou, T.; Wu, X. H.; Yu, H. Q. Facilely tuning the intrinsic catalytic sites of the spinel oxide for peroxymonosulfate activation: From fundamental investigation to pilot-scale demonstration. Proc. Natl. Acad. Sci. USA 2022, 119, e2202682119.

[30]

Sun, Y. B.; Li, R. P.; Song, C. L.; Zhang, H.; Cheng, Y. C.; Nie, A. M.; Li, H. C.; Dionysiou, D. D.; Qian, J. S.; Pan, B. C. Origin of the improved reactivity of MoS2 single crystal by confining lattice Fe atom in peroxymonosulfate-based Fenton-like reaction. Appl. Catal. B: Environ. 2021, 298, 120537.

[31]

Xiong, Y.; Li, H. C.; Liu, C. W.; Zheng, L. R.; Liu, C.; Wang, J. O.; Liu, S. J.; Han, Y. H.; Gu, L.; Qian, J. S. et al. Single-atom Fe catalysts for Fenton-like reactions: Roles of different N species. Adv. Mater. 2022, 34, 2110653.

[32]

Zhou, H. Y.; Lai, L. D.; Wan, Y. J.; He, Y. L.; Yao, G.; Lai, B. Molybdenum disulfide (MoS2): A versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine. Chem. Eng. J. 2020, 384, 123264.

[33]

Chen, Y.; Zhang, G.; Liu, H. J.; Qu, J. H. Confining free radicals in close vicinity to contaminants enables ultrafast Fenton-like processes in the interspacing of MoS2 membranes. Angew. Chem., Int. Ed. 2019, 58, 8134–8138.

[34]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[35]
Hongzhiwei Technology. Device Studio, Version 2022A, China, 2022. https://cloud.hzwtech.com/web/home (accessed Feb 13, 2023).
[36]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[37]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[38]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.

[39]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[40]

Li, S. W.; Liu, Y. C.; Zhao, X. D.; Shen, Q. Y.; Zhao, W.; Tan, Q. W.; Zhang, N.; Li, P.; Jiao, L. F.; Qu, X. H. Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries. Adv. Mater. 2021, 33, 2007480.

[41]

Chen, X. Y.; Wang, Z. M.; Wei, Y. Z.; Zhang, X.; Zhang, Q. H.; Gu, L.; Zhang, L. J.; Yang, N. L.; Yu, R. B. High phase-purity 1T-MoS2 ultrathin nanosheets by a spatially confined template. Angew. Chem., Int. Ed. 2019, 58, 17621–17624.

[42]

Li, G. Z.; Sun, T.; Niu, H. J.; Yan, Y.; Liu, T.; Jiang, S. S.; Yang, Q. L.; Zhou, W.; Guo, L. Triple interface optimization of Ru-based electrocatalyst with enhanced activity and stability for hydrogen evolution reaction. Adv. Funct. Mater. 2023, 33, 2212514.

[43]

Xue, J. Y.; Li, F. L.; Zhao, Z. Y.; Li, C.; Ni, C. Y.; Gu, H. W.; Young, D. J.; Lang, J. P. In situ generation of bifunctional Fe-doped MoS2 nanocanopies for efficient electrocatalytic water splitting. Inorg. Chem 2019, 58, 11202–11209.

[44]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[45]

Xing, M. Y.; Xu, W. J.; Dong, C. C.; Bai, Y. C.; Zeng, J. P.; Zhou, Y.; Zhang, J. L.; Yin, Y. D. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 2018, 4, 1359–1372.

[46]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[47]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[48]

Yang, Y.; Zhang, X. R.; Jiang, J. Y.; Han, J. R.; Li, W. X.; Li, X. Y.; Leung, K. M. Y.; Snyder, S. A.; Alvarez, P. J. J. Which micropollutants in water environments deserve more attention globally. Environ. Sci. Technol. 2022, 56, 13–29.

[49]

Zhou, P.; Ren, W.; Nie, G.; Li, X. J.; Duan, X. G.; Zhang, Y. L.; Wang, S. B. Fast and long-lasting iron(III) reduction by boron toward green and accelerated Fenton chemistry. Angew. Chem., Int. Ed. 2020, 59, 16517–16526.

[50]

Song, C. L.; Zhan, Q.; Liu, F.; Wang, C.; Li, H. C.; Wang, X.; Guo, X. F.; Cheng, Y. C.; Sun, W.; Wang, L. et al. Overturned loading of inert CeO2 to active Co3O4 for unusually improved catalytic activity in Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202200406.

[51]

Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

[52]

Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

[53]

Dong, X. B.; Duan, X. D.; Sun, Z. M.; Zhang, X. W.; Li, C. Q.; Yang, S. S.; Ren, B. X.; Zheng, S. L.; Dionysiou, D. D. Natural illite-based ultrafine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis. Appl. Catal. B: Environ. 2020, 261, 118214.

[54]

Sun, Y. B.; Li, H. C.; Zhang, S. L.; Hua, M.; Qian, J. S.; Pan, B. C. Revisiting the heterogeneous peroxymonosulfate activation by MoS2: A surface mo-peroxymonosulfate complex as the major reactive species. ACS EST Water 2022, 2, 376–384.

[55]

Li, H. C.; Zhao, Z. H.; Qian, J. S.; Pan, B. C. Are free radicals the primary reactive species in Co(II)-mediated activation of peroxymonosulfate? New evidence for the role of the Co(II)-peroxymonosulfate complex. Environ. Sci. Technol. 2021, 55, 6397–6406.

[56]

Lin, Y. H.; Kutin, Y.; van Gastel, M.; Bill, E.; Schnegg, A.; Ye, S. F.; Lee, W. Z. A manganese(IV)-hydroperoxo intermediate generated by protonation of the corresponding manganese(III)-superoxo complex. J. Am. Chem. Soc. 2020, 142, 10255–10260.

[57]

Sankaralingam, M.; Lee, Y. M.; Nam, W.; Fukuzumi, S. Amphoteric reactivity of metal-oxygen complexes in oxidation reactions. Coord. Chem. Rev. 2018, 365, 41–59.

[58]

Zhu, J. L.; Wang, S.; Li, H. C.; Qian, J. S.; Lv, L.; Pan, B. C. Degradation of phosphonates in Co(II)/peroxymonosulfate process: Performance and mechanism. Water Res. 2021, 202, 117397.

[59]

Wang, B. Q.; Cheng, C.; Jin, M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202207268.

[60]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[61]

Li, X. G.; Guo, Y. X.; Yan, L. G.; Yan, T.; Song, W.; Feng, R.; Zhao, Y. W. Enhanced activation of peroxymonosulfate by ball-milled MoS2 for degradation of tetracycline: Boosting molybdenum activity by sulfur vacancies. Chem. Eng. J. 2022, 429, 132234.

[62]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

[63]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[64]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[65]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

Nano Research
Pages 1132-1139
Cite this article:
Sun Y, Zhou Y, Li H, et al. Confinement of Fe atoms between MoS2 interlayers drives phase transition for improved reactivity in Fenton-like reactions. Nano Research, 2024, 17(3): 1132-1139. https://doi.org/10.1007/s12274-023-5938-x
Topics:

749

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 09 May 2023
Revised: 14 June 2023
Accepted: 16 June 2023
Published: 14 August 2023
© Tsinghua University Press 2023
Return