AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Diameter-dependent photoelectric performances of semiconducting carbon nanotubes/perovskite heterojunctions

Yayang Yu1,2Wenke Wang2,3,4Xiao Li2,3,4Linhai Li2,3,4Shilong Li2,4Xiaojun Wei2,3,4,5Weiya Zhou2,3,4,5Jing Lin1Yang Huang1( )Huaping Liu2,3,4,5( )
School of Materials Science and Engineering, Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Center of Materials Science and Optoelectronics Engineering, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Show Author Information

Graphical Abstract

The responsivity, detectivity, and response speed of single-wall carbon nanotubes (SWCNTs)/CsPbBr3 quantum dots (QDs) heterojunction photodetectors increase with an increase in SWCNT diameter.

Abstract

The heterojunction of single-wall carbon nanotubes (SWCNTs) and perovskite quantum dots (QDs) shows excellent photodetection performances due to the combination of the advantages of high carrier mobility of SWCNTs and high absorption coefficient of perovskite QDs. However, the band structure of a SWCNT is determined by its atomic arrangement structure. How the structure of SWCNTs affects the photoelectric performance of the composite film remains elusive. Here, we systematically explored the diameter effect of SWCNTs with different bandgaps on the photodetection performances of SWCNTs/perovskite QDs heterojunction films by integrating semiconducting SWCNTs (s-SWCNTs) with different diameters with CsPbBr3 QDs. The results show that with an increase in diameter of s-SWCNTs, the heterojunction exhibits increasing responsivity (R), detectivity (D*), and faster response time. The great improvement in the optoelectronic performances of devices should be attributed to the higher carrier mobility of larger-diameter SWCNT films and the increasing built-in electric field at the heterojunction interfaces between larger-diameter SWCNTs and CsPbBr3 QDs, which enhances the separation of the photogenerated excitons and the transport of the resulted carriers in SWCNT films.

Electronic Supplementary Material

Download File(s)
12274_2023_5942_MOESM1_ESM.pdf (1.5 MB)

References

[1]

Cai, S.; Xu, X. J.; Yang, W.; Chen, J. X.; Fang, X. S. Materials and designs for wearable photodetectors. Adv. Mater. 2019, 31, 1808138.

[2]

Li, Z. H.; Xu, K.; Wei, F. N. Recent progress in photodetectors based on low-dimensional nanomaterials. Nanotechnol. Rev. 2018, 7, 393–411.

[3]

Bai, P.; Li, X. H.; Yang, N.; Chu, W. D.; Bai, X. Q.; Huang, S. H.; Zhang, Y. H.; Shen, W. Z.; Fu, Z. L.; Shao, D. X. et al. Broadband and photovoltaic THz/IR response in the GaAs-based ratchet photodetector. Sci. Adv. 2022, 8, eabn2031.

[4]

Liu, Y. J.; Liu, C.; Shen, K.; Sun, P.; Li, W. J.; Zhao, C. X.; Ji, Z.; Mai, Y. H.; Mai, W. J. Underwater multispectral computational imaging based on a broadband water-resistant Sb2Se3 heterojunction photodetector. ACS Nano 2022, 16, 5820–5829.

[5]

Arora, K.; Kaur, K.; Kumar, M. Superflexible, self-biased, high-voltage-stable, and seal-packed office-paper based gallium-oxide photodetector. ACS Appl. Electron. Mater. 2021, 3, 1852–1863.

[6]

Zhou, H. X.; Wang, J.; Ji, C. H.; Liu, X. C.; Han, J. Y.; Yang, M.; Gou, J.; Xu, J.; Jiang, Y. D. Polarimetric vis-NIR photodetector based on self-aligned single-walled carbon nanotubes. Carbon 2019, 143, 844–850.

[7]

He, X. W.; Léonard, F.; Kono, J. Uncooled carbon nanotube photodetectors. Adv. Opt. Mater. 2015, 3, 989–1011.

[8]

Yin, H.; Zhang, L. X.; Zhu, M. K.; Chen, Y.; Tian, T.; Zhang, Y. F.; Hu, N. T.; Yang, Z.; Su, Y. J. High-performance visible–near-infrared single-walled carbon nanotube photodetectors via interfacial charge-transfer-induced improvement by surface doping. ACS Appl. Mater. Interfaces 2022, 14, 43628–43636.

[9]

Liu, C. C.; Cao, Y.; Wang, B.; Zhang, Z. X.; Lin, Y. X.; Xu, L.; Yang, Y. J.; Jin, C. H.; Peng, L. M.; Zhang, Z. Y. Complementary transistors based on aligned semiconducting carbon nanotube arrays. ACS Nano 2022, 16, 21482–21490.

[10]

Freitag, M.; Steiner, M.; Naumov, A.; Small, J. P.; Bol, A. A.; Perebeinos, V.; Avouris, P. Carbon nanotube photo- and electroluminescence in longitudinal electric fields. ACS Nano 2009, 3, 3744–3748.

[11]

Herz, L. M. Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits. ACS Energy Lett. 2017, 2, 1539–1548.

[12]

Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514.

[13]

Habisreutinger, S. N.; Noel, N. K.; Larson, B. W.; Reid, O. G.; Blackburn, J. L. Rapid charge-transfer cascade through SWCNT composites enabling low-voltage losses for perovskite solar cells. ACS Energy Lett. 2019, 4, 1872–1879.

[14]

Geng, X. S.; Wang, F. W.; Tian, H.; Feng, Q. X.; Zhang, H. N.; Liang, R. R.; Shen, Y.; Ju, Z. Y.; Gou, G. Y.; Deng, N. Q. et al. Ultrafast photodetector by integrating perovskite directly on silicon wafer. ACS Nano 2020, 14, 2860–2868.

[15]

Panigrahi, S.; Jana, S.; Calmeiro, T.; Nunes, D.; Martins, R.; Fortunato, E. Imaging the anomalous charge distribution inside CsPbBr3 perovskite quantum dots sensitized solar cells. ACS Nano 2017, 11, 10214–10221.

[16]

Fang, Y. J.; Dong, Q. F.; Shao, Y. C.; Yuan, Y. B.; Huang, J. S. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 2015, 9, 679–686.

[17]

Park, J. S.; Calbo, J.; Jung, Y. K.; Whalley, L. D.; Walsh, A. Accumulation of deep traps at grain boundaries in halide perovskites. ACS Energy Lett. 2019, 4, 1321–1327.

[18]

She, X. J.; Chen, C.; Divitini, G.; Zhao, B. D.; Li, Y.; Wang, J. Z.; Orri, J. F.; Cui, L. S.; Xu, W. D.; Peng, J. et al. A solvent-based surface cleaning and passivation technique for suppressing ionic defects in high-mobility perovskite field-effect transistors. Nat. Electron. 2020, 3, 694–703.

[19]

Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466.

[20]

Li, F.; Wang, H.; Kufer, D.; Liang, L. L.; Yu, W. L.; Alarousu, E.; Ma, C.; Li, Y. Y.; Liu, Z. X.; Liu, C. X. et al. Ultrahigh carrier mobility achieved in photoresponsive hybrid perovskite films via coupling with single-walled carbon nanotubes. Adv. Mater. 2017, 29, 1602432.

[21]

Zhu, Q. B.; Li, B.; Yang, D. D.; Liu, C.; Feng, S.; Chen, M. L.; Sun, Y.; Tian, Y. N.; Su, X.; Wang, X. M. et al. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 2021, 12, 1798.

[22]

Hao, J.; Kim, Y. H.; Habisreutinger, S. N.; Harvey, S. P.; Miller, E. M.; Foradori, S. M.; Arnold, M. S.; Song, Z. N.; Yan, Y. F.; Luther, J. M. et al. Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions. Sci. Adv. 2021, 7, eabf1959.

[23]

Weisman, R. B.; Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension:  An empirical Kataura plot. Nano Lett. 2003, 3, 1235–1238.

[24]

Liu, H. P.; Feng, Y.; Tanaka, T.; Urabe, Y.; Kataura, H. Diameter-selective metal/semiconductor separation of single-wall carbon nanotubes by agarose gel. J. Phys. Chem. C 2010, 114, 9270–9276.

[25]

Liu, H. P.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 309.

[26]

Yang, D. H.; Li, L. H.; Wei, X. J.; Wang, Y. C.; Zhou, W. Y.; Kataura, H.; Xie, S. S.; Liu, H. P. Submilligram-scale separation of near-zigzag single-chirality carbon nanotubes by temperature controlling a binary surfactant system. Sci. Adv. 2021, 7, eabe0084.

[27]

Yang, D. H.; Hu, J. W.; Liu, H. P.; Li, S. L.; Su, W.; Li, Q.; Zhou, N. G.; Wang, Y. C.; Zhou, W. Y.; Xie, S. S. et al. Structure sorting of large-diameter carbon nanotubes by NaOH tuning the interactions between nanotubes and gel. Adv. Funct. Mater. 2017, 27, 1700278.

[28]

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

[29]

Su, Y.; Chen, X. J.; Ji, W. Y.; Zeng, Q. H.; Ren, Z. Y.; Su, Z. S.; Liu, L. Highly controllable and efficient synthesis of mixed-halide CsPbX3 (X = Cl, Br, I) perovskite QDs toward the tunability of entire visible light. ACS Appl. Mater. Interfaces 2017, 9, 33020–33028.

[30]

Su, W.; Yang, D. H.; Cui, J. M.; Wang, F. T.; Wei, X. J.; Zhou, W. Y.; Kataura, H.; Xie, S. S.; Liu, H. P. Ultrafast wafer-scale assembly of uniform and highly dense semiconducting carbon nanotube films for optoelectronics. Carbon 2020, 163, 370–378.

[31]

Dag, S.; Gülseren, O.; Ciraci, S.; Yildirim, T. Electronic structure of the contact between carbon nanotube and metal electrodes. Appl. Phys. Lett. 2003, 83, 3180–3182.

[32]

Li, Z.; Ouyang, J. Y.; Ding, J. F. Diameter-dependent semiconducting carbon nanotube network transistor performance. ACS Appl. Electron. Mater. 2022, 4, 6335–6344.

[33]

Wang, H.; Kim, D. H. Perovskite-based photodetectors: Materials and devices. Chem. Soc. Rev. 2017, 46, 5204–5236.

[34]

Wu, X. H.; Zhou, B. L.; Zhou, J. C.; Chen, Y. T.; Chu, Y. L.; Huang, J. Distinguishable detection of ultraviolet, visible, and infrared spectrum with high-responsivity perovskite-based flexible photosensors. Small 2018, 14, 1800527.

[35]

Zhou, G. G.; Sun, R.; Xiao, Y.; Abbas, G.; Peng, Z. C. A high-performance flexible broadband photodetector based on graphene-PTAA-perovskite heterojunctions. Adv. Electron. Mater. 2021, 7, 2000522.

[36]

Chitara, B.; Panchakarla, L. S.; Krupanidhi, S. B.; Rao, C. N. R. Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv. Mater. 2011, 23, 5419–5424.

[37]

Zou, C.; Xi, Y. Y.; Huang, C. Y.; Keeler, E. G.; Feng, T. Y.; Zhu, S. H.; Pozzo, L. D.; Lin, L. Y. A highly sensitive UV–vis–NIR all-inorganic perovskite quantum dot phototransistor based on a layered heterojunction. Adv. Opt. Mater. 2018, 6, 1800324.

[38]

Ka, I.; Gerlein, L. F.; Asuo, I. M.; Nechache, R.; Cloutier, S. G. An ultra-broadband perovskite-PbS quantum dot sensitized carbon nanotube photodetector. Nanoscale 2018, 10, 9044–9052.

[39]

Cao, Q.; Han, S. J.; Tulevski, G. S.; Franklin, A. D.; Haensch, W. Evaluation of field-effect mobility and contact resistance of transistors that use solution-processed single-walled carbon nanotubes. ACS Nano 2012, 6, 6471–6477.

[40]

Asada, Y.; Miyata, Y.; Shiozawa, K.; Ohno, Y.; Kitaura, R.; Mizutani, T.; Shinohara, H. Thin-film transistors with length-sorted DNA-wrapped single-wall carbon nanotubes. J. Phys. Chem. C 2011, 115, 270–273.

Nano Research
Pages 12662-12669
Cite this article:
Yu Y, Wang W, Li X, et al. Diameter-dependent photoelectric performances of semiconducting carbon nanotubes/perovskite heterojunctions. Nano Research, 2023, 16(11): 12662-12669. https://doi.org/10.1007/s12274-023-5942-1
Topics:

802

Views

7

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 01 May 2023
Revised: 17 June 2023
Accepted: 20 June 2023
Published: 27 July 2023
© Tsinghua University Press 2023
Return