AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Laser irradiation constructing all-in-one defective graphene-polyimide separator for effective restraint of lithium dendrites and shuttle effect

Jiawei Mu1,§Mengdi Zhang1,§( )Yanan Li1Zhiliang Dong1Yuanyuan Pan2Bei Chen1Zhengqiu He1Haiqiu Fang1Shuoshuo Kong1Xin Gu1Han Hu1Mingbo Wu1( )
State Key Laboratory of Heavy Oil Processing, Advanced Chemical Engineering and Energy Materials Research Center, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, State Key Laboratory of Bio-Fibers and Eco Textiles, Qingdao University, Qingdao 266071, China

§ Jiawei Mu and Mengdi Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

An all-in-one separator integrating defect-rich graphene framework with polyimide nanofibers is proposed for the first time to restrain lithium dendrites and shuttle effect simultaneously, thus enabling excellent electrochemical performances and safety of Li-S batteries.

Abstract

The commercialization of lithium-sulfur (Li-S) batteries faces several bottlenecks, and the major two of which are the shuttle effect of polysulfides and the wild growth of Li dendrites, responsible for fast capacity decay and severe safety issues. As an essential component of Li-S batteries, the structure and properties of the separators are closely related to the above problems, and the exploration of multifunctional separators is highly sought-after. Herein, an integrated separator composited of defective graphene and polyimide (DG-PI) was innovatively fabricated by electrospinning combined with the laser-induced carbonization strategy. The all-in-one compact architecture with well-interconnected channels shows superior mechanical and thermal stability and wettability. More importantly, the PI nanofibers containing N–/O– functional groups can induce the uniform deposition of lithium on the anode surface, while the DG framework with abundant pentagonal/heptagonal rings and vacancies can strongly trap polysulfides and accelerate polysulfide transformation on the cathode side. The strong chemical interaction between the insulative PI layer and the conductive DG layer modulates the surface charge distribution of each other, leading to more prominent contributions to restraining lithium dendrites and shuttle effect. Therefore, the Li-S batteries based on the integrated DG-PI separators afford an excellent performance in protecting lithium anode (stable cycles of 200 h at 5 mA·cm−2) and good cycling stability with a low capacity decay of 0.05% per cycle after 700 cycles at 1 C. This work offers a new design concept of multifunctional Li-S battery separators and broadens the application scope of laser micro-nano fabrication technology.

Electronic Supplementary Material

Download File(s)
12274_2023_5947_MOESM1_ESM.pdf (2 MB)

References

[1]

Zhou, G. M.; Chen, H.; Cui, Y. Formulating energy density for designing practical lithium-sulfur batteries. Nat. Energy 2022, 7, 312–319.

[2]

Pomerantseva, E.; Bonaccorso, F.; Feng, X. L.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science 2019, 366, 969.

[3]

Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

[4]

Li, Y. G.; Chen, F. J. Li-S batteries: Firing for compactness. Nat. Energy 2017, 2, 17096.

[5]

Yang, H.; Feng, Z. X.; Teng, X. L.; Guan, L.; Hu, H.; Wu, M. B. Three-dimensional printing of high-mass loading electrodes for energy storage applications. InfoMat 2021, 3, 631–647.

[6]

Zhang, M. D.; Chen, B.; Wu, M. B. Research progress in graphene as sulfur hosts in lithium-sulfur batteries. Acta Phys. Chim. Sin. 2022, 38, 2101001.

[7]

Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

[8]

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2011, 11, 19–29.

[9]
Shao, Q. J.; Zhu, S. D.; Chen, J. A review on lithium-sulfur batteries: Challenge, development, and perspective. Nano Res., in press, https://doi.org/10.1007/s12274-022-5227-0.
[10]

Pang, Q.; Shyamsunder, A.; Narayanan, B.; Kwok, C. Y.; Curtiss, L. A.; Nazar, L. F. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat. Energy 2018, 3, 783–791.

[11]

Liang, J.; Sun, Z. H.; Li, F.; Cheng, H. M. Carbon materials for Li-S batteries: Functional evolution and performance improvement. Energy Storage Mater. 2016, 2, 76–106.

[12]

Yin, L. C.; Liang, J.; Zhou, G. M.; Li, F.; Saito, R.; Cheng, H. M. Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations. Nano Energy 2016, 25, 203–210.

[13]

Feng, S.; Liu, J.; Zhang, X. H.; Shi, L. L.; Anderson, C.; Lin, Y. H.; Song, M. K.; Liu, J.; Xiao, J.; Lu, D. P. Rationalizing nitrogen-doped secondary carbon particles for practical lithium-sulfur batteries. Nano Energy 2022, 103, 107794.

[14]

Jin, C. B.; Zhang, W. K.; Zhuang, Z. Z.; Wang, J. G.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C.; Zhang, J.; Tao, X. Y. Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 632–640.

[15]

Zhang, L. L.; Wan, F.; Wang, X. Y.; Cao, H. M.; Dai, X.; Niu, Z. Q.; Wang, Y. J.; Chen, J. Dual-functional graphene carbon as polysulfide trapper for high-performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 5594–5602.

[16]

Yang, J.; Chen, F.; Li, C.; Bai, T.; Long, B.; Zhou, X. Y. A free-standing sulfur-doped microporous carbon interlayer derived from luffa sponge for high performance lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 14324–14333.

[17]

Liang, Z. W.; Shen, J. D.; Xu, X. J.; Li, F. K.; Liu, J.; Yuan, B.; Yu, Y.; Zhu, M. Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries. Adv. Mater. 2022, 34, 2200102.

[18]
Wang, Z. W.; Cheng, Y. W.; Wang, S. Y.; Xu, J.; Peng, B.; Luo, D.; Ma, L. B. Promoting polysulfide conversions via cobalt single-atom catalyst for fast and durable lithium-sulfur batteries. Nano Res., in press, https://doi.org/10.1007/s12274-023-5557-6.
[19]

Cai, W. L.; Song, Y. Z.; Fang, Y. T.; Wang, W. W.; Yu, S. L.; Ao, H. S.; Zhu, Y. C.; Qian, Y. T. Defect engineering on carbon black for accelerated Li-S chemistry. Nano Res. 2020, 13, 3315–3320.

[20]

Guan, L.; Hu, H.; Li, L. Q.; Pan, Y. Y.; Zhu, Y. F.; Li, Q.; Guo, H. L.; Wang, K.; Huang, Y. C.; Zhang, M. D. et al. Intrinsic defect-rich hierarchically porous carbon architectures enabling enhanced capture and catalytic conversion of polysulfides. ACS Nano 2020, 14, 6222–6231.

[21]

Zhang, Y. G.; Li, G. R.; Wang, J. Y.; Luo, D.; Sun, Z. H.; Zhao, Y.; Yu, A. P.; Wang, X.; Chen, Z. W. “Sauna” activation toward intrinsic lattice deficiency in carbon nanotube microspheres for high-energy and long-lasting lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2100497.

[22]

Jiang, J. C.; Fan, Q. N.; Zheng, Z.; Kaiser, M. R.; Chou, S. L.; Konstantinov, K.; Liu, H. K.; Lin, L. X.; Wang, J. Z. The dual functions of defect-rich carbon nanotubes as both conductive matrix and efficient mediator for Li-S batteries. Small 2021, 17, 2103535.

[23]

Li, C.; Liu, R.; Xiao, Y.; Cao, F. F.; Zhang, H. Recent progress of separators in lithium-sulfur batteries. Energy Storage Mater. 2021, 40, 439–460.

[24]

Fan, L. L.; Li, M.; Li, X. F.; Xiao, W.; Chen, Z. W.; Lu, J. Interlayer material selection for lithium-sulfur batteries. Joule 2019, 3, 361–386.

[25]

Li, Y. J.; Wang, W. Y.; Liu, X. X.; Mao, E. Y.; Wang, M. T.; Li, G. C.; Fu, L.; Li, Z.; Eng, A. Y. S.; Seh, Z. W. et al. Engineering stable electrode-separator interfaces with ultrathin conductive polymer layer for high-energy-density Li-S batteries. Energy Storage Mater. 2019, 23, 261–268.

[26]

Wang, Q. J.; Song, W. L.; Fan, L. Z.; Song, Y. Facile fabrication of polyacrylonitrile/alumina composite membranes based on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes for high-voltage lithium-ion batteries. J. Membr. Sci. 2015, 486, 21–28.

[27]

He, Q.; Yu, B.; Wang, H.; Rana, M.; Liao, X. B.; Zhao, Y. Oxygen defects boost polysulfides immobilization and catalytic conversion: First-principles computational characterization and experimental design. Nano Res. 2020, 13, 2299–2307.

[28]

Ye, R. Q.; James, D. K.; Tour, J. M. Laser-induced graphene. Acc. Chem. Res. 2018, 51, 1609–1620.

[29]

Dong, Y.; Rismiller, S. C.; Lin, J. Molecular dynamic simulation of layered graphene clusters formation from polyimides under extreme conditions. Carbon 2016, 104, 47–55.

[30]

Bai, S. G.; Tang, Y.; Lin, L. H.; Ruan, L. Y.; Song, R. X.; Chen, H. J.; Du, Y.; Lin, H. Y.; Shan, Y. F.; Tang, Y. R. Investigation of micro/nano formation mechanism of porous graphene induced by CO2 laser processing on polyimide film. J. Manuf. Process 2022, 84, 555–564.

[31]

Vashisth, A.; Kowalik, M.; Gerringer, J. C.; Ashraf, C.; Van Duin, A. C. T.; Green, M. J. Reaxff simulations of laser-induced graphene (LIG) formation for multifunctional polymer nanocomposites. ACS Appl. Nano Mater. 2020, 3, 1881–1890.

[32]

Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.

[33]

Shi, Z. X.; Li, M.; Sun, J. Y.; Chen, Z. W. Defect engineering for expediting Li-S chemistry: Strategies, mechanisms, and perspectives. Adv. Energy Mater. 2021, 11, 2100332.

[34]

Song, Y. Z.; Gao, H.; Wang, M. L.; Chen, L.; Cao, X.; Song, L. X.; Liu, X. H.; Cai, W. L.; Sun, J. Y.; Zhang, W. Deciphering the defect micro-environment of graphene for highly efficient Li-S redox reactions. EcoMat 2022, 4, e12182.

[35]

Luo, X.; Lu, X. B.; Zhou, G. Y.; Zhao, X. Y.; Ouyang, Y.; Zhu, X. B.; Miao, Y. E.; Liu, T. X. Ion-selective polyamide acid nanofiber separators for high-rate and stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 42198–42206.

[36]

Zhan, H. C.; Zou, P. C.; Yao, W. T.; Qian, L.; Liu, K. W.; Hu, S. Y.; Zhu, H. J.; He, Y. B.; Kang, F. Y.; Yang, C. Toward real-time monitoring of lithium metal growth and dendrite formation surveillance for safe lithium metal batteries. J. Mater. Chem. A 2020, 8, 7090–7099.

[37]

Xu, T.; Qu, R. J.; Zhang, Y.; Sun, C. M.; Wang, Y.; Kong, X. Y.; Geng, X.; Ji, C. N. Preparation of bifunctional polysilsesquioxane/carbon nanotube magnetic composites and their adsorption properties for Au(III). Chem. Eng. J. 2021, 410, 128225.

[38]

Zhang, M. D.; Yu, C.; Zhao, C. T.; Song, X. D.; Han, X. T.; Liu, S. H.; Hao, C.; Qiu, J. S. Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium-sulfur battery. Energy Storage Mater. 2016, 5, 223–229.

[39]

Zhang, M. D.; Yu, C.; Yang, J.; Zhao, C. T.; Ling, Z.; Qiu, J. S. Nitrogen-doped tubular/porous carbon channels implanted on graphene frameworks for multiple confinement of sulfur and polysulfides. J. Mater. Chem. A 2017, 5, 10380–10386.

[40]

Zhang, M. D.; Mu, J. W.; Li, Y. N.; Pan, Y. Y.; Dong, Z. L.; Chen, B.; Guo, S. W.; Yuan, W. H.; Fang, H. Q.; Hu, H. et al. Propelling polysulfide redox by Fe3C-FeN heterostructure@nitrogen-doped carbon framework towards high-efficiency Li-S batteries. J. Energy Chem. 2023, 78, 105–114.

[41]
Yang, H.; Wan, Y.; Sun, K.; Zhang, M. D.; Wang, C. Z.; He, Z. Q.; Li, Q.; Wang, N.; Zhang, Y. L.; Hu, H. et al. Reconciling mass loading and gravimetric performance of MnO2 cathodes by 3D-printed carbon structures for zinc-ion batteries. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202215076.
[42]

Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742.

[43]

Sha, J. W.; Li, Y. L.; Salvatierra, R. V.; Wang, T.; Dong, P.; Ji, Y.; Lee, S. K.; Zhang, C. H.; Zhang, J. B.; Smith, R. H. et al. Three-dimensional printed graphene foams. ACS Nano 2017, 11, 6860–6867.

[44]

Zhou, T. H.; Zhao, Y.; Choi, J. W.; Coskun, A. Ionic liquid functionalized gel polymer electrolytes for stable lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 22791–22796.

[45]

Kim, D. W.; Senthil, C.; Jung, S. M.; Kim, S. S.; Kim, H. S.; Hong, J. W.; Ahn, J. H.; Jung, H. Y. Selective ion transport of catalytic hybrid aerofilm interlayer for long-stable Li-S batteries. Energy Storage Mater. 2022, 47, 472–481.

[46]

Wang, Z. Q.; Huang, W. Y.; Hua, J. C.; Wang, Y. D.; Yi, H. C.; Zhao, W. G.; Zhao, Q. H.; Jia, H.; Fei, B.; Pan, F. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries. Small Methods 2020, 4, 2000082.

[47]

Pan, D.; Zhao, C. L.; Qi, X. G.; Liu, L. L.; Rong, X. H.; Sun, S. W.; Lu, Y. X.; Bai, Y.; Hu, Y. S. Defect-abundant commercializable 3D carbon papers for fabricating composite Li anode with high loading and long life. Energy Storage Mater. 2022, 50, 407–416.

[48]

Yang, S.; Xiao, R.; Hu, T. Z.; Fan, X. L.; Xu, R. G.; Sun, Z. H.; Zhong, B. H.; Guo, X. D.; Li, F. Ni2P electrocatalysts decorated hollow carbon spheres as bi-functional mediator against shuttle effect and Li dendrite for Li-S batteries. Nano Energy 2021, 90, 106584.

[49]

Li, Y. C.; Zhou, Z. F.; Li, Y.; Zhang, Z. H.; Guo, X. S.; Liu, J.; Mao, C. M.; Li, Z. J.; Li, G. C. Selenium vacancies enable efficient immobilization and bidirectional conversion acceleration of lithium polysulfides for advanced Li-S batteries. Nano Res. 2022, 15, 7234–7246.

[50]

Yu, M. L.; Zhou, S.; Wang, Z. Y.; Wang, Y. W.; Zhang, N.; Wang, S.; Zhao, J. J.; Qiu, J. S. Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries. Energy Storage Mater. 2019, 20, 98–107.

[51]

Liu, X. F.; Wang, Y. R.; Chen, H.; Li, B.; Zang, S. Q. Conducting polymer-functionalized mesoporous metal-organic frameworks for high-performance Li-S battery. Nano Res. 2023, 16, 4867–4873.

[52]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9001–9004.

Nano Research
Pages 12304-12314
Cite this article:
Mu J, Zhang M, Li Y, et al. Laser irradiation constructing all-in-one defective graphene-polyimide separator for effective restraint of lithium dendrites and shuttle effect. Nano Research, 2023, 16(10): 12304-12314. https://doi.org/10.1007/s12274-023-5947-9
Topics:
Part of a topical collection:

810

Views

6

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 01 March 2023
Revised: 09 June 2023
Accepted: 21 June 2023
Published: 08 August 2023
© Tsinghua University Press 2023
Return