AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dual-responsive fiber-reinforced hydrogel actuators by direct ion patterning

Mingyuan Zhao1,2,§Dong Han1,2,§Yuan Meng1,2Jing Liu1Yuting Zhu1Zhongxian Li1,2Kai Li3Wentao Liu1( )Zhuo Ao1 ( )
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
College of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China

§ Mingyuan Zhao and Dong Han contributed equally to this work.

Show Author Information

Graphical Abstract

Supramolecular metal ligand hydrogels (SMCH) prepared by pre-stretching technique possess the dual responsive properties of both solvent and light, which can achieve complex and reversible programmed deformation.

Abstract

Nature inspired deformable heterogeneous smart hydrogels have attracted much attention in many fields such as biomedicine devices and soft actuators. However, normal spatial heterogeneous hydrogel structures can only respond to single factor and take one action as set in fabrication. Herein, we report a pre-stretched metal-liganded shape memory hydrogel with fiber reinforced, P(AAc-co-AAm)/CCNFs-Fe3+ (CCNFs: carboxylated cellulose nanofibers, AAc: acrylic acid, AAm: acrylamide), which can conduct shape deformation by solvent induction and ultraviolet (UV) light. The deformation pattern could be programmed by the deposing of ferroin ions. Also, the pre-stretched shape memory hydrogels could effectively produce cyclic actuation or complex shape actuation by UV light. More importantly, combining the solvent response with the light response enabled complex reversible actuations, such as simulating the bending and unfolding of fingers. The addition of CCNFs significantly enhanced the mechanical properties of the hydrogels. The hydrogels with 3 wt.% CCNFs showed an elongation at break of about 500% and a significant increase in tensile strength of 8.7-fold to 1.55 MPa after coordination with metal ions, which was able to meet the mechanical requirements of the bionic actuated hydrogels. This work demonstrated that combining light-programmed and light-responsive shape-memory hydrogels, complemented by another independent response property, could achieve complex and reversible programmed actuations.

Electronic Supplementary Material

Video
12274_2023_5948_MOESM1_ESM.mp4
12274_2023_5948_MOESM2_ESM.mp4
12274_2023_5948_MOESM3_ESM.mp4
12274_2023_5948_MOESM4_ESM.mp4
12274_2023_5948_MOESM5_ESM.mp4
Download File(s)
12274_2023_5948_MOESM6_ESM.pdf (529.9 KB)

References

[1]

Dawson, C.; Vincent, J. F. V.; Rocca, A. M. How pine cones open. Nature 1997, 390, 668.

[2]

Armon, S.; Efrati, E.; Kupferman, R.; Sharon, E. Geometry and mechanics in the opening of chiral seed pods. Science 2011, 333, 1726–1730.

[3]

Liu, Z. Q.; Jiao, D.; Zhang, Z. F. Remarkable shape memory effect of a natural biopolymer in aqueous environment. Biomaterials 2015, 65, 13–21.

[4]

Sullivan, T. N.; Zhang, Y. L.; Zavattieri, P. D.; Meyers, M. A. Hydration-induced shape and strength recovery of the feather. Adv. Funct. Mater. 2018, 28, 1801250.

[5]

Tang, L.; Wang, L.; Yang, X.; Feng, Y. Y.; Li, Y.; Feng, W. Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications. Prog. Mater. Sci 2021, 115, 100702.

[6]

Ko, B.; Badloe, T.; Yang, Y.; Park, J.; Kim, J.; Jeong, H.; Jung, C.; Rho, J. Tunable metasurfaces via the humidity responsive swelling of single-step imprinted polyvinyl alcohol nanostructures. Nat. Commun. 2022, 13, 6256.

[7]

Dong, Y.; Wang, J.; Guo, X. K.; Yang, S. S.; Ozen, M. O.; Chen, P.; Liu, X.; Du, W.; Xiao, F.; Demirci, U. et al. Multi-stimuli-responsive programmable biomimetic actuator. Nat. Commun. 2019, 10, 4087.

[8]

Zhu, C. N.; Li, C. Y.; Wang, H.; Hong, W.; Huang, F. H.; Zheng, Q.; Wu, Z. L. Reconstructable gradient structures and reprogrammable 3D deformations of hydrogels with coumarin units as the photolabile crosslinks. Adv. Mater. 2021, 33, 2008057.

[9]

Qin, J. J.; Chu, K. B.; Huang, Y. P.; Zhu, X. M.; Hofkens, J.; He, G. J.; Parkin, I. P.; Lai, F. L.; Liu, T. X. The bionic sunflower: A bio-inspired autonomous light tracking photocatalytic system. Energy Environ. Sci. 2021, 14, 3931–3937.

[10]

Jiang, Z.; Tan, M. L.; Taheri, M.; Yan, Q.; Tsuzuki, T.; Gardiner, M. G.; Diggle, B.; Connal, L. A. Strong, self-healable, and recyclable visible-light-responsive hydrogel actuators. Angew. Chem., Int. Ed. 2020, 59, 7049–7056.

[11]

Li, C.; Xue, Y. G.; Han, M. D.; Palmer, L. C.; Rogers, J. A.; Huang, Y. G.; Stupp, S. I. Synergistic photoactuation of bilayered spiropyran hydrogels for predictable origami-like shape change. Matter 2021, 4, 1377–1390.

[12]

Zhu, Q. L.; Dai, C. F.; Wagner, D.; Daab, M.; Hong, W.; Breu, J.; Zheng, Q.; Wu, Z. L. Distributed electric field induces orientations of nanosheets to prepare hydrogels with elaborate ordered structures and programmed deformations. Adv. Mater. 2020, 32, 2005567.

[13]

Lee, Y. W.; Kim, J. K.; Bozuyuk, U.; Dogan, N. O.; Khan, M. T. A.; Shiva, A.; Wild, A. M.; Sitti, M. Multifunctional 3D-printed pollen grain-inspired hydrogel microrobots for on-demand anchoring and cargo delivery. Adv. Mater. 2023, 35, 2209812.

[14]

Khodambashi, R.; Alsaid, Y.; Rico, R.; Marvi, H.; Peet, M. M.; Fisher, R. E.; Berman, S.; He, X. M.; Aukes, D. M. Heterogeneous hydrogel structures with spatiotemporal reconfigurability using addressable and tunable voxels. Adv. Mater. 2021, 33, 2005906.

[15]

Weng, G. S.; Thanneeru, S.; He, J. Dynamic coordination of Eu-iminodiacetate to control fluorochromic response of polymer hydrogels to multistimuli. Adv. Mater. 2018, 30, 1706526.

[16]

Li, Z.; Liu, P. C.; Ji, X. F.; Gong, J. Y.; Hu, Y. B.; Wu, W. J.; Wang, X. N.; Peng, H. Q.; Kwok, R. T. K.; Lam, J. W. Y. et al. Bioinspired simultaneous changes in fluorescence color, brightness, and shape of hydrogels enabled by AIEgens. Adv. Mater. 2020, 32, 1906493.

[17]

Zhang, H.; Koens, L.; Lauga, E.; Mourran, A.; Möller, M. A light-driven microgel rotor. Small 2019, 15, 1903379.

[18]

Paikar, A.; Novichkov, A. I.; Hanopolskyi, A. I.; Smaliak, V. A.; Sui, X. M.; Kampf, N.; Skorb, E. V.; Semenov, S. N. Spatiotemporal regulation of hydrogel actuators by autocatalytic reaction networks. Adv. Mater. 2022, 34, 2106816.

[19]

Bi, Y. H.; Du, X. X.; He, P. P.; Wang, C. Y.; Liu, C.; Guo, W. W. Smart bilayer polyacrylamide/DNA hybrid hydrogel film actuators exhibiting programmable responsive and reversible macroscopic shape deformations. Small 2020, 16, 1906998.

[20]

Xue, P.; Bisoyi, H. K.; Chen, Y. H.; Zeng, H.; Yang, J. J.; Yang, X.; Lv, P. F.; Zhang, X. M.; Priimagi, A.; Wang, L. et al. Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem., Int. Ed. 2021, 60, 3390–3396.

[21]

Zhu, Q. L.; Du, C.; Dai, Y. H.; Daab, M.; Matejdes, M.; Breu, J.; Hong, W.; Zheng, Q.; Wu, Z. L. Light-steered locomotion of muscle-like hydrogel by self-coordinated shape change and friction modulation. Nat. Commun. 2020, 11, 5166.

[22]

Ye, S.; Ma, W. J.; Fu, G. D. A novel nature-inspired anisotropic hydrogel with programmable shape deformations. Chem. Eng. J. 2022, 450, 137908.

[23]

Cui, H. L.; Pan, N.; Fan, W. X.; Liu, C. Z.; Li, Y. H.; Xia, Y. Z.; Sui, K. Y. Ultrafast fabrication of gradient nanoporous all-polysaccharide films as strong, superfast, and multiresponsive actuators. Adv. Funct. Mater. 2019, 29, 1807692.

[24]

Gevorkian, A.; Morozova, S. M.; Kheiri, S.; Khuu, N.; Chen, H. Y.; Young, E.; Yan, N.; Kumacheva, E. Actuation of three-dimensional-printed nanocolloidal hydrogel with structural anisotropy. Adv. Funct. Mater. 2021, 31, 2010743.

[25]

Zhou, X. H.; Li, T. Z.; Wang, J. H.; Chen, F.; Zhou, D.; Liu, Q.; Li, B. J.; Cheng, J. Y.; Zhou, X. C.; Zheng, B. Mechanochemical regulated origami with tough hydrogels by ion transfer printing. ACS Appl. Mater. Interfaces 2018, 10, 9077–9084.

[26]

Xu, Z. X.; Fu, J. Programmable and reversible 3D-/4D-shape-morphing hydrogels with precisely defined ion coordination. ACS Appl. Mater. Interfaces 2020, 12, 26476–26484.

[27]

Zhang, Y. C.; Liao, J. X.; Wang, T.; Sun, W. X.; Tong, Z. Polyampholyte hydrogels with pH modulated shape memory and spontaneous actuation. Adv. Funct. Mater. 2018, 28, 1707245.

[28]

Zhao, Z. G.; Zhang, K. J.; Liu, Y. X.; Zhou, J. J.; Liu, M. J. Highly stretchable, shape memory organohydrogels using phase-transition microinclusions. Adv. Mater. 2017, 29, 1701695.

[29]

Qu, G. W.; Huang, J. J.; Li, Z.; Jiang, Y. G.; Liu, Y.; Chen, K.; Xu, Z. Y.; Zhao, Y.; Gu, G. S.; Wu, X. W. et al. 4D-printed bilayer hydrogel with adjustable bending degree for enteroatmospheric fistula closure. Mater. Today Bio 2022, 16, 100363.

[30]

Ma, Y. F.; Hua, M. T.; Wu, S. W.; Du, Y. J.; Pei, X. W.; Zhu, X. Y.; Zhou, F.; He, X. M. Bioinspired high-power-density strong contractile hydrogel by programmable elastic recoil. Sci. Adv. 2020, 6, eabd2520.

[31]

Chen, M. Q.; Cui, Y. D.; Wang, Y. X.; Chang, C. Y. Triple physically cross-linked hydrogel artificial muscles with high-stroke and high-work capacity. Chem. Eng. J. 2023, 453, 139893.

[32]

Zhang, Y. Y.; Fan, G. L.; Jiang, J. Q.; Liu, Z. T.; Liu, Z. W.; Li, G. Light-guided growth of gradient hydrogels with programmable geometries and thermally responsive actuations. ACS Appl. Mater. Interfaces 2022, 14, 29188–29196.

[33]

Wen, X.; Zhang, Y.; Chen, D.; Zhao, Q. Reversible shape-shifting of an ionic strength responsive hydrogel enabled by programmable network anisotropy. ACS Appl. Mater. Interfaces 2022, 14, 40344–40350.

[34]

Lu, Z.; Sun, L. W.; Liu, J. P.; Wei, H. Q.; Zhang, P.; Yu, Y. Photoredox-mediated designing and regulating metal-coordinate hydrogels for programmable soft 3D-printed actuators. ACS Macro Lett. 2022, 11, 967–974.

[35]

Lu, H. H.; Wu, B. Y.; Yang, X. X.; Zhang, J. W.; Jian, Y. K.; Yan, H. Z.; Zhang, D. C.; Xue, Q. J.; Chen, T. Actuating supramolecular shape memorized hydrogel toward programmable shape deformation. Small 2020, 16, 2005461.

[36]

Habault, D.; Zhang, H. J.; Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 2013, 42, 7244–7256.

[37]

Obiweluozor, F. O.; GhavamiNejad, A.; Maharjan, B.; Kim, J.; Park, C. H.; Kim, C. S. A mussel inspired self-expandable tubular hydrogel with shape memory under NIR for potential biomedical applications. J. Mater. Chem. B 2017, 5, 5373–5379.

[38]

Davidson-Rozenfeld, G.; Stricker, L.; Simke, J.; Fadeev, M.; Vázquez-González, M.; Ravoo, B. J.; Willner, I. Light-responsive arylazopyrazole-based hydrogels: Their applications as shape-memory materials, self-healing matrices and controlled drug release systems. Polym. Chem. 2019, 10, 4106–4115.

[39]

Liu, W.; Geng, L. H.; Wu, J. M.; Huang, A.; Peng, X. F. Highly strong and sensitive bilayer hydrogel actuators enhanced by cross-oriented nanocellulose networks. Compos. Sci. Technol. 2022, 225, 109494.

[40]

Lu, Y.; Han, J. Q.; Ding, Q. Q.; Yue, Y. Y.; Xia, C. L.; Ge, S. B.; Van Le, Q.; Dou, X. M.; Sonne, C.; Lam, S. S. TEMPO-oxidized cellulose nanofibers/polyacrylamide hybrid hydrogel with intrinsic self-recovery and shape memory properties. Cellulose 2021, 28, 1469–1488.

[41]

Dong, H.; Snyder, J. F.; Williams, K. S.; Andzelm, J. W. Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromolecules 2013, 14, 3338–3345.

[42]

Yao, K.; Huang, S.; Tang, H.; Xu, Y. P.; Buntkowsky, G.; Berglund, L. A.; Zhou, Q. Bioinspired interface engineering for moisture resistance in nacre-mimetic cellulose nanofibrils/clay nanocomposites. ACS Appl. Mater. Interfaces 2017, 9, 20169–20178.

Nano Research
Pages 13381-13391
Cite this article:
Zhao M, Han D, Meng Y, et al. Dual-responsive fiber-reinforced hydrogel actuators by direct ion patterning. Nano Research, 2023, 16(12): 13381-13391. https://doi.org/10.1007/s12274-023-5948-8
Topics:
Part of a topical collection:

837

Views

3

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 29 April 2023
Revised: 14 June 2023
Accepted: 21 June 2023
Published: 08 August 2023
© Tsinghua University Press 2023
Return