AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Doping engineering of lithium-aluminum layered double hydroxides for high-efficiency lithium extraction from salt lake brines

Lingjie Zhang1,2,3Tingting Zhang1( )Yunliang Zhao2,4( )Guangfeng Dong1,5Shuaike Lv2Songliang Ma5Shaoxian Song2Mildred Quintana3
School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, Av. Parque Chapultepec 1570, San Luis Potosi 78210, Mexico
Wuhan Clayene Technology Co., Ltd., Wuhan 430223, China
State Development Investment Xinjiang Lop Nur Potash Corporation, Hami 839000, China
Show Author Information

Graphical Abstract

Doping engineering of lithium-aluminum layered double hydroxides (LiAl-LDH) lithium ion sieve via a simple one-pot co-precipitation method could optimize microstructures and surface affinity, as well as accelerate the diffusion process of Li+ in the internal bulk, thus significantly improving the Li+ extraction performance.

Abstract

Lithium-aluminum layered double hydroxides (LiAl-LDH) have been be successfully applied in commercial-scale for lithium extraction from salt lake brine, however, further advancement of their applications is hampered by suboptimal Li+ adsorption performance and ambiguous extraction process. Herein, a doping engineering strategy was developed to fabricate novel Zn2+-doped LiAl-LDH (LiZnAl-LDH) with remarkable higher Li+ adsorption capacity (13.4 mg/g) and selectivity (separation factors of 213, 834, 171 for Li+/K+, Li+/Na+, Li+/Mg2+, respectively), as well as lossless reusability in Luobupo brine compared to the pristine LiAl-LDH. Further, combining experiments and simulation calculations, it was revealed that the specific surface area, hydrophilic, and surface attraction for Li+ of LiZnAl-LDH were significantly improved, reducing the adsorption energy (Ead) and Gibbs free energy (ΔG), thus facilitating the transfer of Li+ from brine into interface followed by insertion into voids. Importantly, the intrinsic oxygen vacancies derived from Zn-doping depressed the diffusion energy barrier of Li+, which accelerated the diffusion process of Li+ in the internal bulk of LiZnAl-LDH. This work provides a general strategy to overcome the existing limitations of Li+ recovery and deepens the understanding of Li+ extraction on LiAl-LDH.

Electronic Supplementary Material

Download File(s)
12274_2023_5950_MOESM1_ESM.pdf (4.3 MB)

References

[1]

Xu, S. S.; Song, J. F.; Bi, Q. Y.; Chen, Q.; Zhang, W. M.; Qian, Z. X.; Zhang, L.; Xu, S. A.; Tang, N.; He, T. Extraction of lithium from Chinese salt-lake brines by membranes: Design and practice. J. Membr. Sci. 2021, 635, 119441.

[2]

Yang, S. X.; Zhang, F.; Ding, H. P.; He, P.; Zhou, H. S. Lithium metal extraction from seawater. Joule 2018, 2, 1648–1651.

[3]

Hou, L.; Xing, B. L.; Zeng, H. H.; Kang, W. W.; Guo, H.; Cheng, S.; Huang, G. X.; Cao, Y. J.; Chen, Z. F.; Zhang, C. X. Aluminothermic reduction synthesis of Si/C composite nanosheets from waste vermiculite as high-performance anode materials for lithium-ion batteries. J. Alloys Compd. 2022, 922, 166134.

[4]

Wu, L.; Zhang, C. Y.; Kim, S.; Hatton, T. A.; Mo, H. L.; Waite, T. D. Lithium recovery using electrochemical technologies: Advances and challenges. Water Res. 2022, 221, 118822.

[5]

Sun, X.; Ouyang, M. G.; Hao, H. Surging lithium price will not impede the electric vehicle boom. Joule 2022, 6, 1738–1742.

[6]

Chen, J.; Lin, S.; Yu, J. G. High-selective cyclic adsorption and magnetic recovery performance of magnetic lithium-aluminum layered double hydroxides (MLDHs) in extracting Li+ from ultrahigh Mg/Li ratio brines. Sep. Purif. Technol. 2021, 255, 117710.

[7]

Zhang, T. T.; Bai, H. Y.; Zhao, Y. L.; Ren, B.; Wen, T.; Chen, L. C.; Song, S. X.; Komarneni, S. Precise cation recognition in two-dimensional nanofluidic channels of clay membranes imparted from intrinsic selectivity of clays. ACS Nano 2022, 16, 4930–4939.

[8]

Zhao, X. Y.; Yang, S.; Hou, Y. D.; Gao, H. Q.; Wang, Y. F.; Gribble, D. A.; Pol, V. G. Recent progress on key materials and technical approaches for electrochemical lithium extraction processes. Desalination 2023, 546, 116189.

[9]

Baudino, L.; Santos, C.; Pirri, C. F.; La Mantia, F.; Lamberti, A. Recent advances in the lithium recovery from water resources: From passive to electrochemical methods. Adv. Sci. 2022, 9, 2201380.

[10]

Sun, Y.; Wang, Q.; Wang, Y. H.; Yun, R. P.; Xiang, X. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine. Sep. Purif. Technol. 2021, 256, 117807.

[11]

Miao, J.; Zhao, K. Y.; Guo, F.; Xu, L. N.; Xie, Y. C.; Deng, T. L. Novel LIS-doped mixed matrix membrane absorbent with high structural stability for sustainable lithium recovery from geothermal water. Desalination 2022, 527, 115570.

[12]

Safari, S.; Lottermoser, B. G.; Alessi, D. S. Metal oxide sorbents for the sustainable recovery of lithium from unconventional resources. Appl. Mater. Today 2020, 19, 100638.

[13]

Xu, X.; Chen, Y. M.; Wan, P. Y.; Gasem, K.; Wang, K. Y.; He, T.; Adidharma, H.; Fan, M. H. Extraction of lithium with functionalized lithium ion-sieves. Prog. Mater. Sci. 2016, 84, 276–313.

[14]

Chen, J.; Lin, S.; Yu, J. G. Quantitative effects of Fe3O4 nanoparticle content on Li+ adsorption and magnetic recovery performances of magnetic lithium-aluminum layered double hydroxides in ultrahigh Mg/Li ratio brines. J. Hazard. Mater. 2020, 388, 122101.

[15]

Yu, H. W.; Naidu, G.; Zhang, C. Y.; Wang, C.; Razmjou, A.; Han, D. S.; He, T.; Shon, H. Metal-based adsorbents for lithium recovery from aqueous resources. Desalination 2022, 539, 115951.

[16]

Zhang, Y. B.; Liu, J. C.; Yang, Y.; Lin, S.; Li, P. Preparation of granular titanium-type lithium-ion sieves and recyclability assessment for lithium recovery from brines with different pH value. Sep. Purif. Technol. 2021, 267, 118613.

[17]

Zhao, K. Y.; Tong, B. J.; Yu, X. P.; Guo, Y. F.; Xie, Y. C.; Deng, T. L. Synthesis of porous fiber-supported lithium ion-sieve adsorbent for lithium recovery from geothermal water. Chem. Eng. J. 2022, 430, 131423.

[18]

Bao, L. R.; Zhang, J. Z.; Tang, W. P.; Sun, S. Y. Synthesis and adsorption properties of metal oxide-coated lithium ion-sieve from salt lake brine. Desalination 2023, 546, 116196.

[19]

Dong, M. Z.; Luo, Q. L.; Li, J.; Wu, Z. J.; Liu, Z. Lithium adsorption properties of porous LiAl-layered double hydroxides synthesized using surfactants. J. Saudi Chem. Soc. 2022, 26, 101535.

[20]

Lin, S.; Pan, Y. N.; Du, J. L.; Yang, Y.; Su, H. P.; Yu, J. G. Double-edged role of interlayer water on Li+ extraction from ultrahigh Mg2+/Li+ ratio brines using Li/Al-LDHs. J. Colloid Interface Sci. 2022, 627, 872–879.

[21]

Wu, L. L.; Evans, S. F.; Cheng, Y. Q.; Navrotsky, A.; Moyer, B. A.; Harrison, S.; Paranthaman, M. P. Neutron spectroscopic and thermochemical characterization of lithium-aluminum-layered double hydroxide chloride: Implications for lithium recovery. J. Phys. Chem. C 2019, 123, 20723–20729.

[22]

Luo, Q. L.; Dong, M. Z.; Li, Q.; Wu, Z. J.; Liu, Z.; Li, J. Improve the durability of lithium adsorbent Li/Al-LDHs by Fe3+ substitution and nanocomposite of FeOOH. Miner. Eng. 2022, 185, 107717.

[23]

Paranthaman, M. P.; Li, L.; Luo, J. Q.; Hoke, T.; Ucar, H.; Moyer, B. A.; Harrison, S. Recovery of lithium from geothermal brine with lithium-aluminum layered double hydroxide chloride sorbents. Environ. Sci. Technol. 2017, 51, 13481–13486.

[24]

Xiao, W.; Jiang, X. P.; Liu, X.; Zhou, W. M.; Garba, Z. N.; Lawan, I.; Wang, L. W.; Yuan, Z. H. Adsorption of organic dyes from wastewater by metal-doped porous carbon materials. J. Cleaner Prod. 2021, 284, 124773.

[25]

Ma, Z.; Shi, W.; Yan, K.; Pan, L. J.; Yu, G. H. Doping engineering of conductive polymer hydrogels and their application in advanced sensor technologies. Chem. Sci. 2019, 10, 6232–6244.

[26]

Zhang, L. J.; Ke, Z. S.; Wang, W. Z.; Liu, H. L.; Mao, Y. T.; Xiang, M. X.; Zhang, P. Enhanced removal of multiple metal ions on S-doped graphene-like carbon-supported layered double oxide: Mechanism and DFT study. Sep. Purif. Technol. 2022, 288, 120636.

[27]

Zhang, L. J.; Zheng, S. Y.; Li, P.; Zhu, Z. B.; Zou, Y. Q.; Zhang, P. Resource utilization of organic spent adsorbent to prepare three-dimensional sulfate-functionalized layered double oxide for superior removal of azo dye. Environ. Sci. Pollut. Res. 2021, 28, 53021–53033.

[28]

Wu, J.; Yang, B. Q.; Song, S. X.; Quintana, M.; Jia, F. F.; Tian, X. The efficient recovery of molybdenite fines using a novel collector: Flotation performances, adsorption mechanism and DFT calculation. Miner. Eng. 2022, 188, 107848.

[29]

Jiang, M. X.; Hu, Y. J.; Mao, B. G.; Wang, Y. X.; Yang, Z.; Meng, T.; Wang, X.; Cao, M. H. Strain-regulated Gibbs free energy enables reversible redox chemistry of chalcogenides for sodium ion batteries. Nat. Commun. 2022, 13, 5588.

[30]

Sun, D.; Ye, D. L.; Liu, P.; Tang, Y. G.; Guo, J.; Wang, L. Z.; Wang, H. Y. MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702383.

[31]

Qian, F. R.; Guo, M.; Qian, Z. Q.; Zhao, B.; Li, J.; Wu, Z. J.; Liu, Z. Enabling highly structure stability and adsorption performances of Li1.6Mn1.6O4 by Al-gradient surface doping. Sep. Purif. Technol. 2021, 264, 118433.

[32]

Li, Y. Y.; Tang, N.; Zhang, L.; Li, J. Fabrication of Fe-doped lithium-aluminum-layered hydroxide chloride with enhanced reusable stability inspired by computational theory and its application in lithium extraction. Colloids Surf. A Physicochem. Eng. Aspects 2023, 658, 130641.

[33]

Graham, T. R.; Hu, J. Z.; Zhang, X.; Dembowski, M.; Jaegers, N. R.; Wan, C.; Bowden, M.; Lipton, A. S.; Felmy, A. R.; Clark, S. B. et al. Unraveling gibbsite transformation pathways into LiAl-LDH in concentrated lithium hydroxide. Inorg. Chem. 2019, 58, 12385–12394.

[34]

Khan, A. I.; O’Hare, D. Intercalation chemistry of layered double hydroxides: Recent developments and applications. J. Mater. Chem. 2002, 12, 3191–3198.

[35]

Zhang, X.; Yi, H.; Jin, M. T.; Lian, Q.; Huang, Y.; Ai, Z.; Huang, R. Q.; Zuo, Z. T.; Tang, C. M.; Amini, A. et al. In situ reconstructed Zn doped FexNi(1−x)OOH catalyst for efficient and ultrastable oxygen evolution reaction at high current densities. Small 2022, 18, 2203710.

[36]

Pu, X. H.; Du, X. H.; Jing, P.; Wei, Y. H.; Wang, G. C.; Xian, C. X.; Wu, K. P.; Wu, H.; Wang, Q.; Ji, X. B. et al. Interface and defect engineering enable fast and high-efficiency Li extraction of metatitanic acid adsorbent. Chem. Eng. J. 2021, 425, 130550.

[37]

Keyikoglu, R.; Khataee, A.; Lin, H. J.; Orooji, Y. Vanadium (V)-doped ZnFe layered double hydroxide for enhanced sonocatalytic degradation of pymetrozine. Chem. Eng. J. 2022, 434, 134730.

[38]

Zhou, S. Y.; Guo, X. J.; Yan, X.; Chen, Y.; Lang, W. Z. Zr-doped titanium lithium ion sieve and EP-granulated composite: Superb adsorption and recycling performance. Particuology 2022, 69, 100–110.

[39]

Cao, G. F.; Yang, X. Y.; Yin, Z. L.; Lei, Y. T.; Wang, H.; Li, J. S. Synthesis, adsorption properties and stability of Cr-doped lithium ion sieve in salt lake brine. Bull. Chem. Soc. Jpn. 2019, 92, 1205–1210.

[40]

Hou, L.; Xing, B. L.; Kang, W. W.; Zeng, H. H.; Guo, H.; Cheng, S.; Huang, G. X.; Cao, Y. J.; Chen, Z. F.; Zhang, C. X. Aluminothermic reduction synthesis of porous silicon nanosheets from vermiculite as high-performance anode materials for lithium-ion batteries. Appl. Clay Sci. 2022, 218, 106418.

[41]

Zhitova, E. S.; Pekov, I. V.; Chaikovskiy, I. I.; Chirkova, E. P.; Yapaskurt, V. O.; Bychkova, Y. V.; Belakovskiy, D. I.; Chukanov, N. V.; Zubkova, N. V.; Krivovichev, S. V. et al. Dritsite, Li2Al4(OH)12Cl2·3H2O, a new gibbsite-based hydrotalcite supergroup mineral. Minerals 2019, 9, 492.

[42]

Luo, D. Z.; Yang, B. P.; Mei, Z. W.; Kang, Q.; Chen, G.; Liu, X. H.; Zhang, N. Tuning the d-band states of Ni-based serpentine materials via Fe3+ doping for efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 2022, 14, 52857–52867.

[43]

Li, Q. N.; Liang, W. Y.; Liu, F.; Wang, G. H.; Wan, J.; Zhang, W.; Peng, C.; Yang, J. Simultaneous immobilization of arsenic, lead and cadmium by magnesium-aluminum modified biochar in mining soil. J. Environ. Manage. 2022, 310, 114792.

[44]

Lan, T.; Li, P. F.; Rehman, F. U.; Li, X. L.; Yang, W.; Guo, S. W. Efficient adsorption of Cd2+ from aqueous solution using metakaolin geopolymers. Environ. Sci. Pollut. Res. 2019, 26, 33555–33567.

[45]

Ding, Y. M.; Wang, Z.; Zhang, Z. Y.; Zhao, Y. C.; Yang, S. Y.; Zhang, Y. L.; Yao, S. C.; Wang, S. B.; Huang, T.; Zhang, Y. et al. Oxygen vacancy-engineered BaTiO3 nanoparticles for synergistic cancer photothermal, photodynamic, and catalytic therapy. Nano Res. 2022, 15, 7304–7312.

[46]

Li, X. W.; Chao, Y. H.; Chen, L. L.; Chen, W.; Luo, J.; Wang, C.; Wu, P. W.; Li, H. M.; Zhu, W. S. Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources. Chem. Eng. J. 2020, 392, 123731.

[47]

Zhang, P.; Zhang, L. J.; Ke, Z. S.; Xiang, M. X.; Cai, Y.; Wang, W. J.; Chen, Y. N.; Zhu, Z. B. Sulfate-loaded layered double oxide: A bifunctional adsorbent for simultaneous purification of metal ion and anionic dye. Appl. Clay Sci. 2022, 216, 106366.

[48]

Lu, Z.; Wu, Y.; Ding, L.; Wei, Y. Y.; Wang, H. H. A lamellar MXene (Ti3C2Tx)/PSS composite membrane for fast and selective lithium-ion separation. Angew. Chem. 2021, 133, 22439–22443.

[49]

Ding, K. Y.; Zhu, G. R.; Song, C. H.; Wang, Q.; Wang, L.; Wang, Z. Q.; Meng, C. X.; Gao, C. J. Fabrication of polyacrylonitrile-Li1.6Mn1.6O4 composite nanofiber flat-sheet membranes via electrospinning method as effective adsorbents for Li+ recovery from salt-lake brine. Sep. Purif. Technol. 2022, 284, 120242.

[50]

Persson, I. Hydrated metal ions in aqueous solution: How regular are their structures. Pure Appl. Chem. 2010, 82, 1901–1917.

[51]

Lin, J.; Zeng, C. H.; Lin, X. M.; Xu, C.; Xu, X.; Luo, Y. F. Metal-organic framework-derived hierarchical MnO/Co with oxygen vacancies toward elevated-temperature Li-Ion battery. ACS Nano 2021, 15, 4594–4607.

Nano Research
Pages 1646-1654
Cite this article:
Zhang L, Zhang T, Zhao Y, et al. Doping engineering of lithium-aluminum layered double hydroxides for high-efficiency lithium extraction from salt lake brines. Nano Research, 2024, 17(3): 1646-1654. https://doi.org/10.1007/s12274-023-5950-1
Topics:

1058

Views

13

Crossref

28

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 19 April 2023
Revised: 20 June 2023
Accepted: 22 June 2023
Published: 19 August 2023
© Tsinghua University Press 2023
Return