AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The activity of Zn precursors determines the cation exchange reaction kinetics with Ag2S: Zn-doped Ag2S or Ag2S@ZnS QDs

Zhiyong Tang1,2Hongchao Yang1( )Ziqiang Sun1Yejun Zhang1( )Guangcun Chen1,2Qiangbin Wang1,2( )
CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Nano Science and Technology Institute, University of Science and Technology of China, Hefei 230026, China
Show Author Information

Graphical Abstract

Reasonable control of Zn precursor chemistry needs to be considered when designing of nanocrystals by affecting cation exchange protocols. By applying this method, high-quality Zn-doped Ag2S quantum dots (QDs) and Ag2S@ZnS QDs with a cubic phase ZnS shell were synthesized successfully.

Abstract

Cation exchange (CE) has been emerged as a promising post-synthesis strategy of colloidal nanocrystals. However, it is unclear how the cation precursor affects the CE process and the final colloidal nanocrystals. Herein, we utilized two Zn-B Lewis acid-base adduct complexes (B = oleylamine (OAM) and methanol (MeOH)) as Zn precursors for CE with Ag2S quantum dots (QDs). Our study revealed that the steric hindrance and complexing capabilities of Zn precursor significantly affect the CE kinetics. As a result, the Zn-doped Ag2S (Zn:Ag2S) and Ag2S@ZnS core–shell QDs were successfully obtained with enormous enhancement of their photoluminescence (PL) intensities. Theoretical simulation showed that the Zn-OAM with higher desolvation energy and spatial hindrance tended to form doped Zn:Ag2S QDs due to the inefficient cation exchange. Whereas the Zn-MeOH with lower exchange barrier promoted the conversion of Ag-S to Zn-S, thus forming Ag2S@ZnS core–shell QDs. We anticipate that this finding will enrich the regulatory approaches of post-synthesis of colloidal nanocrystals with desirable properties.

Electronic Supplementary Material

Download File(s)
12274_2023_5952_MOESM1_ESM.pdf (4 MB)

References

[1]

Owen, J.; Brus, L. Chemical synthesis and luminescence applications of colloidal semiconductor quantum dots. J. Am. Chem. Soc. 2017, 139, 10939–10943.

[2]

Lu, H. P.; Carroll, G. M.; Neale, N. R.; Beard, M. C. Infrared quantum dots: Progress, challenges, and opportunities. ACS Nano 2019, 13, 939–953.

[3]

Tang, X.; Ackerman, M. M.; Chen, M. L.; Guyot-Sionnest, P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photonics 2019, 13, 277–282.

[4]

Sun, Z. Q.; Liu, C.; Yang, H. C.; Yang, X. H.; Zhang, Y. J.; Lin, H. Z.; Li, Y. Y.; Wang, Q. B. AgAuSe quantum dots with absolute photoluminescence quantum yield of 87.2%: The effect of capping ligand chain length. Nano Res. 2022, 15, 8555–8563.

[5]

Zhang, Y. J.; Yang, H. C.; An, X. Y.; Wang, Z.; Yang, X. H.; Yu, M. X.; Zhang, R.; Sun, Z. Q.; Wang, Q. B. Controlled synthesis of Ag2Te@Ag2S core–shell quantum dots with enhanced and tunable fluorescence in the second near-infrared window. Small 2020, 16, 2001003.

[6]

Yang, H. C.; Huang, H. Y.; Ma, X.; Zhang, Y. J.; Yang, X. H.; Yu, M. X.; Sun, Z. Q.; Li, C. Y.; Wu, F.; Wang, Q. B. Au-doped Ag2Te quantum dots with bright NIR-IIb fluorescence for in situ monitoring of angiogenesis and arteriogenesis in a hindlimb ischemic model. Adv. Mater. 2021, 33, 2103953.

[7]

Dutta, A.; Bera, R.; Ghosh, A.; Patra, A. Ultrafast carrier dynamics of photo-induced Cu-doped CdSe nanocrystals. J. Phys. Chem. C 2018, 122, 16992–17000.

[8]

Jeong, B. G.; Chang, J. H.; Hahm, D.; Rhee, S.; Park, M.; Lee, S.; Kim, Y.; Shin, D.; Park, J. W.; Lee, C. et al. Interface polarization in heterovalent core–shell nanocrystals. Nat. Mater. 2022, 21, 246–252.

[9]

De Trizio, L.; Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 2016, 116, 10852–10887.

[10]

Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 2004, 306, 1009–1012.

[11]

Gupta, S.; Kershaw, S. V.; Rogach, A. L. 25th anniversary article: Ion exchange in colloidal nanocrystals. Adv. Mater. 2013, 25, 6923–6944.

[12]

van der Stam, W.; Geuchies, J. J.; Altantzis, T.; van den Bos, K. H. W.; Meeldijk, J. D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D.; de Mello Donega, C. Highly emissive divalent-ion-doped colloidal CsPb1−xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 2017, 139, 4087–4097.

[13]

Butterfield, A. G.; McCormick, C. R.; Veglak, J. M.; Schaak, R. E. Morphology-dependent phase selectivity of cobalt sulfide during nanoparticle cation exchange reactions. J. Am. Chem. Soc. 2021, 143, 7915–7919.

[14]

Pinchetti, V.; Di, Q. M.; Lorenzon, M.; Camellini, A.; Fasoli, M.; Zavelani-Rossi, M.; Meinardi, F.; Zhang, J. T.; Crooker, S. A.; Brovelli, S. Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants. Nat. Nanotechnol. 2018, 13, 145–151.

[15]

Eilers, J.; Groeneveld, E.; de Mello Donegá, C.; Meijerink, A. Optical properties of Mn-doped ZnTe magic size nanocrystals. J. Phys. Chem. Lett. 2012, 3, 1663–1667.

[16]

Yang, H. C.; Li, R. F.; Zhang, Y. J.; Yu, M. X.; Wang, Z.; Liu, X.; You, W. W.; Tu, D. T.; Sun, Z. Q.; Zhang, R. et al. Colloidal alloyed quantum dots with enhanced photoluminescence quantum yield in the NIR-II window. J. Am. Chem. Soc. 2021, 143, 2601–2607.

[17]

Bai, B.; Xu, M.; Li, N.; Chen, W. X.; Liu, J. J.; Liu, J.; Rong, H. P.; Fenske, D.; Zhang, J. T. Semiconductor nanocrystal engineering by applying thiol- and solvent-coordinated cation exchange kinetics. Angew. Chem., Int. Ed. 2019, 58, 4852–4857.

[18]

Li, D.; Zhang, X. L.; Ramzan, M.; Gu, K.; Chen, Y.; Zhang, J. T.; Zou, B. S.; Zhong, H. Z. Colloidal synthesis of giant shell PbSe-based core/shell quantum dots in polar solvent: Cation exchange versus epitaxial growth. Chem. Mater. 2020, 32, 6650–6656.

[19]

Hinterding, S. O. M.; Berends, A. C.; Kurttepeli, M.; Moret, M. E.; Meeldijk, J. D.; Bals, S.; van der Stam, W.; de Mello Donega, C. Tailoring Cu+ for Ga3+ cation exchange in Cu2−xS and CuInS2 nanocrystals by controlling the Ga precursor chemistry. ACS Nano 2019, 13, 12880–12893.

[20]

Hewavitharana, I. K.; Brock, S. L. When ligand exchange leads to ion exchange: Nanocrystal facets dictate the outcome. ACS Nano 2017, 11, 11217–11224.

[21]

Fan, Z. C.; Lin, L. C.; Buijs, W.; Vlugt, T. J. H.; van Huis, M. A. Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands. Nat. Commun. 2016, 7, 11503.

[22]

van der Stam, W.; Berends, A. C.; Rabouw, F. T.; Willhammar, T.; Ke, X. X.; Meeldijk, J. D.; Bals, S.; de Mello Donega, C. Luminescent CuInS2 quantum dots by partial cation exchange in Cu2−xS nanocrystals. Chem. Mater. 2015, 27, 621–628.

[23]

Beberwyck, B. J.; Surendranath, Y.; Alivisatos, A. P. Cation exchange: A versatile tool for nanomaterials synthesis. J. Phys. Chem. C 2013, 117, 19759–19770.

[24]

Sahu, A.; Kang, M. S.; Kompch, A.; Notthoff, C.; Wills, A. W.; Deng, D.; Winterer, M.; Frisbie, C. D.; Norris, D. J. Electronic impurity doping in CdSe nanocrystals. Nano Lett. 2012, 12, 2587–2594.

[25]

Jharimune, S.; Sathe, A. A.; Rioux, R. M. Thermochemical measurements of cation exchange in CdSe nanocrystals using isothermal titration calorimetry. Nano Lett. 2018, 18, 6795–6803.

[26]

Gui, J.; Ji, M. W.; Liu, J. J.; Xu, M.; Zhang, J. T.; Zhu, H. S. Phosphine-initiated cation exchange for precisely tailoring composition and properties of semiconductor nanostructures: Old concept, new applications. Angew. Chem. 2015, 127, 3754–3758.

[27]

Akkerman, Q. A.; Genovese, A.; George, C.; Prato, M.; Moreels, I.; Casu, A.; Marras, S.; Curcio, A.; Scarpellini, A.; Pellegrino, T. et al. From binary Cu2S to ternary Cu-In-S and quaternary Cu-In-Zn-S nanocrystals with tunable composition via partial cation exchange. ACS Nano 2015, 9, 521–531.

[28]

Justo, Y.; Goris, B.; Kamal, J. S.; Geiregat, P.; Bals, S.; Hens, Z. Multiple dot-in-rod PbS/CdS heterostructures with high photoluminescence quantum yield in the near-infrared. J. Am. Chem. Soc. 2012, 134, 5484–5487.

[29]

Zhang, J. B.; Chernomordik, B. D.; Crisp, R. W.; Kroupa, D. M.; Luther, J. M.; Miller, E. M.; Gao, J. B.; Beard, M. C. Preparation of Cd/Pb chalcogenide heterostructured janus particles via controllable cation exchange. ACS Nano 2015, 9, 7151–7163.

[30]

Shen, S. L.; Zhang, Y. J.; Peng, L.; Du, Y. P.; Wang, Q. B. Matchstick-shaped Ag2S-ZnS heteronanostructures preserving both UV/blue and near-infrared photoluminescence. Angew. Chem., Int. Ed. 2011, 50, 7115–7118.

[31]

Gholizadeh, R.; Wang, Y. J. Molecular dynamics simulation of the aggregation phenomenon in the late stages of silica materials preparation. Chem. Eng. Sci. 2018, 184, 62–71.

[32]

Pracht, P.; Bohle, F.; Grimme, S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192.

[33]

Grimme, S.; Bannwarth, C.; Shushkov, P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009.

[34]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 16. Gaussian, Inc. Wallingford, CT, 2016.
[35]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[36]

Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627.

[37]

Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.

[38]

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

[39]

Zhang, J. T.; Di, Q. M.; Liu, J.; Bai, B.; Liu, J.; Xu, M.; Liu, J. J. Heterovalent doping in colloidal semiconductor nanocrystals: Cation-exchange-enabled new accesses to tuning dopant luminescence and electronic impurities. J. Phys. Chem. Lett. 2017, 8, 4943–4953.

[40]
Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, 2007.
[41]

Mu, L. L.; Feng, C. J.; He, H. M. Topological research on lattice energies for inorganic compounds. MATCH Commun. Math. Comput. Chem. 2006, 56, 97–111.

[42]

Sun, J. Y.; Yu, W. L.; Usman, A.; Isimjan, T. T.; DGobbo, S.; Alarousu, E.; Takanabe, K.; Mohammed, O. F. Generation of multiple excitons in Ag2S quantum dots: Single high-energy versus multiple-photon excitation. J. Phys. Chem. Lett. 2014, 5, 659–665.

[43]

Underwood, D. F.; Kippeny, T.; Rosenthal, S. J. Ultrafast carrier dynamics in CdSe nanocrystals determined by femtosecond fluorescence upconversion spectroscopy. J. Phys. Chem. B 2001, 105, 436–443.

[44]

Peng, P.; Sadtler, B.; Alivisatos, A. P.; Saykally, R. J. Exciton dynamics in CdS-Ag2S nanorods with tunable composition probed by ultrafast transient absorption spectroscopy. J. Phys. Chem. C 2010, 114, 5879–5885.

[45]

Rivest, J. B.; Jain, P. K. Cation exchange on the nanoscale: An emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem. Soc. Rev. 2013, 42, 89–96.

[46]

Qin, R. Z.; Wang, Y. T.; Zhang, M. Z.; Wang, Y.; Ding, S. X.; Song, A. Y.; Yi, H. C.; Yang, L. Y.; Song, Y. L.; Cui, Y. H. et al. Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 2021, 80, 105478.

[47]

Song, J. L. Q.; Ma, C.; Zhang, W. Z.; Li, X. D.; Zhang, W. T.; Wu, R. B.; Cheng, X. C.; Ali, A.; Yang, M. Y.; Zhu, L. X. et al. Bandgap and structure engineering via cation exchange: From binary Ag2S to ternary AgInS2, quaternary AgZnInS alloy and AgZnInS/ZnS core/shell fluorescent nanocrystals for bioimaging. ACS Appl. Mater. Interfaces 2016, 8, 24826–24836.

[48]

Groeneveld, E.; Witteman, L.; Lefferts, M.; Ke, X. X.; Bals, S.; Van Tendeloo, G.; de Mello Donega, C. Tailoring ZnSe-CdSe colloidal quantum dots via cation exchange: From core/shell to alloy nanocrystals. ACS Nano 2013, 7, 7913–7930.

Nano Research
Pages 12315-12322
Cite this article:
Tang Z, Yang H, Sun Z, et al. The activity of Zn precursors determines the cation exchange reaction kinetics with Ag2S: Zn-doped Ag2S or Ag2S@ZnS QDs. Nano Research, 2023, 16(10): 12315-12322. https://doi.org/10.1007/s12274-023-5952-z
Topics:
Part of a topical collection:

914

Views

9

Crossref

9

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 17 February 2023
Revised: 30 May 2023
Accepted: 23 June 2023
Published: 05 August 2023
© Tsinghua University Press 2023
Return