AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Bimetallic clusters confined inside silicalite-1 for stable propane dehydrogenation

Xueer Wei1Jiawei Cheng1Yubing Li1Kang Cheng1,2( )Fanfei Sun3,4( )Qinghong Zhang1( )Ye Wang1,2
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, China
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

The confinement of bimetallic clusters inside zeolite crystals can significantly increase the dispersion and stability of noble metal catalysts. The PtSn@silicalite-1 with only a Pt loading of 0.17 wt.% offers a high propane dehydrogenation performance with a propylene selectivity of 99% and stability of 300 h.

Abstract

The noble metal-based bimetallic clusters with high atom utilization and surface energy have been widely applied in heterogeneous catalysis, but the stabilization of these metastable clusters in harsh reaction conditions is quite challenging. Herein, we synthesize a series of Pt-, Pd-, and Ru-based clusters promoted by a second non-noble metal (Zn, Cu, Sn, and Fe), which are confined inside silicalite-1 (pure silica, S-1) crystals by a ligand-protected method. The second metal could well stabilize and disperse the noble atoms inside the rigid S-1 zeolites via Si–O–M bonds, thus enabling to lower the usage of expensive noble metals in catalysts. The as-synthesized bimetallic catalysts exhibited excellent performance in non-oxidative propane dehydrogenation (PDH) reaction, which is typically operated above 500 °C. The PtZn@S-1, PtCu@S-1, and PtSn@S-1 with only a ~ 0.17 wt.% Pt loading offer a significant enhancement in PDH performance compared with the conventional PtSn/Al2O3 catalyst with a 0.5 wt.% Pt loading prepared by impregnation method. Notably, the PtSn@S-1 provides a propane conversion of 45% with a 99% propylene selectivity at 550 °C, close to the thermodynamic equilibrium. Furthermore, the PtSn@S-1 exhibits excellent stability during 300 h on stream and high tolerance to regeneration by a simple calcination step.

Electronic Supplementary Material

Download File(s)
12274_2023_5953_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.

[2]

Zhang, F.; Zeng, M. H.; Yappert, R. D.; Sun, J. K.; Lee, Y. H.; LaPointe, A. M.; Peters, B.; Abu-Omar, M. M.; Scott, S. L. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 2020, 370, 437–441.

[3]

Cheng, K.; Smulders, L. C. J.; van Der Wal, L. I.; Oenema, J.; Meeldijk, J. D.; Visser, N. L.; Sunley, G.; Roberts, T.; Xu, Z. R.; Doskocil, E. et al. Maximizing noble metal utilization in solid catalysts by control of nanoparticle location. Science 2022, 377, 204–208.

[4]

Deng, W. P.; Feng, Y. C.; Fu, J.; Guo, H. W.; Guo, Y.; Han, B. X.; Jiang, Z. C.; Kong, L. Z.; Li, C. Z.; Liu, H. C. et al. Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy Environ. 2023, 8, 10–114.

[5]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[6]

Peng, M.; Dong, C. Y.; Gao, R.; Xiao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed cluster catalyst (FECC): Toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 2021, 7, 262–273.

[7]

Dong, C. Y.; Gao, Z. R.; Li, Y. L.; Peng, M.; Wang, M.; Xu, Y.; Li, C. Y.; Xu, M.; Deng, Y. C.; Qin, X. T. et al. Fully exposed palladium cluster catalysts enable hydrogen production from nitrogen heterocycles. Nat. Catal. 2022, 5, 485–493.

[8]

Wang, Y. Q.; Wang, C. T.; Wang, L. X.; Wang, L.; Xiao, F. S. Zeolite fixed metal nanoparticles: New perspective in catalysis. Acc. Chem. Res. 2021, 54, 2579–2590.

[9]

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

[10]

Bartholomew, C. H. Mechanisms of catalyst deactivation. Appl. Catal. A Gen. 2001, 212, 17–60.

[11]

Chen, K.; Li, Y. B.; Wang, M. H.; Wang, Y. H.; Cheng, K.; Zhang, Q. H.; Kang, J. C.; Wang, Y. Functionalized carbon materials in syngas conversion. Small 2021, 17, 2007527.

[12]

Wang, C. T.; Guan, E. J.; Wang, L.; Chu, X. F.; Wu, Z. Y.; Zhang, J.; Yang, Z. Y.; Jiang, Y. W.; Zhang, L.; Meng, X. J. et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J. Am. Chem. Soc. 2019, 141, 8482–8488.

[13]

Liu, L. C.; Lopez-Haro, M.; Lopes, C. W.; Li, C. G.; Concepcion, P.; Simonelli, L.; Calvino, J. J.; Corma, A. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 2019, 18, 866–873.

[14]

van Deelen, T. W.; Hernández Mejía, C.; De Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970.

[15]

Deng, S. G.; Lin, Y. S. Sulfur dioxide sorption properties and thermal stability of hydrophobic zeolites. Ind. Eng. Chem. Res. 1995, 34, 4063–4070.

[16]

Zhang, Q.; Yu, J. H.; Corma, A. Applications of zeolites to C1 chemistry: Recent advances, challenges, and opportunities. Adv. Mater. 2020, 32, 2002927.

[17]

Xu, H.; Wu, P. New progress in zeolite synthesis and catalysis. Natl. Sci. Rev. 2022, 9, nwac045.

[18]

Wu, S. M.; Yang, X. Y.; Janiak, C. Confinement effects in zeolite-confined noble metals. Angew. Chem., Int. Ed. 2019, 58, 12340–12354.

[19]

Chen, H.; Li, W.; Zhang, M. C.; Wang, W. Y.; Zhang, X. H.; Lu, F.; Cheng, K.; Zhang, Q. H.; Wang, Y. Boosting propane dehydroaromatization by confining PtZn alloy nanoparticles within H-ZSM-5 crystals. Catal. Sci. Technol. 2022, 12, 7281–7292.

[20]

Yang, Z. Y.; Li, H.; Zhou, H.; Wang, L.; Wang, L. X.; Zhu, Q. Y.; Xiao, J. P.; Meng, X. J.; Chen, J. X.; Xiao, F. S. Coking-resistant iron catalyst in ethane dehydrogenation achieved through siliceous zeolite modulation. J. Am. Chem. Soc. 2020, 142, 16429–16436.

[21]

Li, K. H.; Valla, J.; Garcia-Martinez, J. Realizing the commercial potential of hierarchical zeolites: New opportunities in catalytic cracking. ChemCatChem 2014, 6, 46–66.

[22]

Cheng, K.; van Der Wal, L. I.; Yoshida, H.; Oenema, J.; Harmel, J.; Zhang, Z.; Sunley, G.; Zečević, J.; De Jong, K. P. Impact of the spatial organization of bifunctional Metal-Zeolite catalysts on the hydroisomerization of light alkanes. Angew. Chem., Int. Ed. 2020, 59, 3592–3600.

[23]
Chai, Y. C.; Qin, B.; Li, B. N.; Dai, W. L.; Wu, G. J.; Guan, N. J.; Li, L. D. Zeolite-encaged mononuclear copper centers catalyze CO2 selective hydrogenation to methanol. Natl. Sci. Rev., in press, https://doi.org/10.1093/nsr/nwad043.
[24]

Kistler, J. D.; Chotigkrai, N.; Xu, P. H.; Enderle, B.; Praserthdam, P.; Chen, C. Y.; Browning, N. D.; Gates, B. C. A single-site platinum CO oxidation catalyst in zeolite KLTL: Microscopic and spectroscopic determination of the locations of the Platinum atoms. Angew. Chem., Int. Ed. 2014, 53, 8904–8907.

[25]

Li, Y.; Yu, J. H. Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nat. Rev. Mater. 2021, 6, 1156–1174.

[26]

Wang, W. Y.; Zhou, W.; Li, W.; Xiong, X. W.; Wang, Y. H.; Cheng, K.; Kang, J. C.; Zhang, Q. H.; Wang, Y. In-situ confinement of ultrasmall palladium nanoparticles in silicalite-1 for methane combustion with excellent activity and hydrothermal stability. Appl. Catal. B: Environ. 2020, 276, 119142.

[27]

Hughes, A. E.; Haque, N.; Northey, S. A.; Giddey, S. Platinum group metals: A review of resources, production and usage with a focus on catalysts. Resources 2021, 10, 93.

[28]

Regali, F.; Liotta, L. F.; Venezia, A. M.; Boutonnet, M.; Järås, S. Hydroconversion of n-hexadecane on Pt/silica-alumina catalysts: Effect of metal loading and support acidity on bifunctional and hydrogenolytic activity. Appl. Catal. A: Gen. 2014, 469, 328–339.

[29]

Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. Q.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.

[30]

Jin, Z.; Wang, L.; Zuidema, E.; Mondal, K.; Zhang, M.; Zhang, J.; Wang, C. T.; Meng, X. J.; Yang, H. Q.; Mesters, C. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 2020, 367, 193–197.

[31]

Zhang, Q.; Gao, S. Q.; Yu, J. H. Metal sites in zeolites: Synthesis, characterization, and catalysis. Chem. Rev. 2023, 123, 6039–6106.

[32]

Wang, N.; Sun, Q. M.; Yu, J. H. Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: A fascinating class of nanocatalysts. Adv. Mater. 2019, 31, 1803966.

[33]

Liu, Y. T.; Zhang, L. F.; Dong, Z. J.; Luo, L. L. Precise control of Pt encapsulation in zeolite-based catalysts for a stable low-temperature CO oxidation reaction. Sci. China Chem. 2022, 65, 2015–2022.

[34]

Konnov, S. V.; Dubray, F.; Clatworthy, E. B.; Kouvatas, C.; Gilson, J. P.; Dath, J. P.; Minoux, D.; Aquino, C.; Valtchev, V.; Moldovan, S. et al. Novel strategy for the synthesis of ultra-stable single-site Mo-ZSM-5 zeolite nanocrystals. Angew. Chem., Int. Ed. 2020, 59, 19553–19560.

[35]

Motagamwala, A. H.; Almallahi, R.; Wortman, J.; Igenegbai, V. O.; Linic, S. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. Science 2021, 373, 217–222.

[36]

Zhao, D.; Tian, X. X.; Doronkin, D. E.; Han, S. L.; Kondratenko, V. A.; Grunwaldt, J. D.; Perechodjuk, A.; Vuong, T. H.; Rabeah, J.; Eckelt, R. et al. In situ formation of ZnOx species for efficient propane dehydrogenation. Nature 2021, 599, 234–238.

[37]

Wang, P.; Yang, M.; Liao, H. F.; Xu, K. Y.; Zong, X. P.; Xie, Z. L.; Zhao, H. B.; Xu, Y. J.; Yang, H.; Gan, Y. Y. et al. Restructured zeolites anchoring singly dispersed bimetallic platinum and zinc catalysts for propane dehydrogenation. Cell Rep. Phys. Sci. 2023, 4, 101311.

[38]

Wang, P.; Yao, J. K.; Jiang, Q. K.; Gao, X. H.; Lin, D.; Yang, H.; Wu, L. Z.; Tang, Y.; Tan, L. Stabilizing the isolated Pt sites on PtGa/Al2O3 catalyst via silica coating layers for propane dehydrogenation at low temperature. Appl. Catal. B:Environ. 2022, 300, 120731.

[39]

Monai, M.; Gambino, M.; Wannakao, S.; Weckhuysen, B. M. Propane to olefins tandem catalysis: A selective route towards light olefins production. Chem. Soc. Rev. 2021, 50, 11503–11529.

[40]

Dai, Y. H.; Gao, X.; Wang, Q. J.; Wan, X. Y.; Zhou, C. M.; Yang, Y. H. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chem. Soc. Rev. 2021, 50, 5590–5630.

[41]

Shi, L.; Deng, G. M.; Li, W. C.; Miao, S.; Wang, Q. N.; Zhang, W. P.; Lu, A. H. Al2O3 Nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation. Angew. Chem., Int. Ed. 2015, 54, 13994–13998.

[42]

Perechodjuk, A.; Zhang, Y. Y.; Kondratenko, V. A.; Rodemerck, U.; Linke, D.; Bartling, S.; Kreyenschulte, C. R.; Jiang, G. Y.; Kondratenko, E. V. The effect of supported Rh, Ru, Pt or Ir nanoparticles on activity and selectivity of ZrO2-based catalysts in non-oxidative dehydrogenation of propane. Appl. Catal. A: Gen. 2020, 602, 117731.

[43]

Rochlitz, L.; Pessemesse, Q.; Fischer, J. W. A.; Klose, D.; Clark, A. H.; Plodinec, M.; Jeschke, G.; Payard, P. A.; Copéret, C. A robust and efficient propane dehydrogenation catalyst from unexpectedly segregated Pt2Mn nanoparticles. J. Am. Chem. Soc. 2022, 144, 13384–13393.

[44]

Liu, L. C.; Díaz, U.; Arenal, R.; Agostini, G.; Concepción, P.; Corma, A. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 2017, 16, 132–138.

[45]

Sun, Q. M.; Wang, N.; Fan, Q. Y.; Zeng, L.; Mayoral, A.; Miao, S.; Yang, R. O.; Jiang, Z.; Zhou, W.; Zhang, J. C. et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation. Angew. Chem., Int. Ed. 2020, 59, 19450–19459.

[46]

Zhou, J.; Liu, H.; Xiong, C.; Hu, P.; Wang, H.; Wang, X. Y.; Ji, H. B. Potassium-promoted Pt-In bimetallic clusters encapsulated in silicalite-1 zeolite for efficient propane dehydrogenation. Chem. Eng. J. 2023, 455, 139794.

[47]

Zhang, W. Q.; Zhang, X. B.; Wang, J. Y.; Ghosh, A.; Zhu, J.; LiBretto, N. J.; Zhang, G. H.; Datye, A. K.; Liu, W.; Miller, J. T. Bismuth-modulated surface structural evolution of Pd3Bi intermetallic alloy catalysts for selective propane dehydrogenation and acetylene semihydrogenation. ACS Catal. 2022, 12, 10531–10545.

[48]

Zhou, Y. L.; Wei, F. F.; Qi, H. F.; Chai, Y. C.; Cao, L. R.; Lin, J.; Wan, Q.; Liu, X. Y.; Xing, Y. N.; Lin, S. et al. Peripheral-nitrogen effects on the Ru1 centre for highly efficient propane dehydrogenation. Nat. Catal. 2022, 5, 1145–1156.

[49]

Zeng, L.; Li, W.; Wei, X. E.; Cheng, J. W.; Zhou, W.; Zheng, Y. P.; Cai, F.; Liu, Y. F.; Cheng, K.; Zhang, Q. H. et al. IrGa bimetallic catalyst with atomical metal dispersion for propane dehydrogenation with high stability. ChemCatChem 2023, 15, e202201405.

[50]

Chen, S.; Zhao, Z. J.; Mu, R. T.; Chang, X.; Luo, J.; Purdy, S. C.; Kropf, A. J.; Sun, G. D.; Pei, C. L.; Miller, J. T. et al. Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts. Chem 2021, 7, 387–405.

[51]

Newville, M. IFEFFIT: Interactive XAFS analysis and FEFF fitting. J. Synchrotron. Radiat. 2001, 8, 322–324.

[52]

Friedrich, H.; De Jongh, P. E.; Verkleij, A. J.; De Jong, K. P. Electron tomography for heterogeneous catalysts and related nanostructured materials. Chem. Rev. 2009, 109, 1613–1629.

[53]

Zečević, J.; van Der Eerden, A. M. J.; Friedrich, H.; De Jongh, P. E.; De Jong, K. P. Heterogeneities of the nanostructure of Platinum/zeolite Y catalysts revealed by electron tomography. ACS Nano 2013, 7, 3698–3705.

[54]

Zhang, B. F.; Li, G. Z.; Zhai, Z. W.; Chen, D. L.; Tian, Y. J.; Yang, R. O.; Wang, L.; Zhang, X. W.; Liu, G. Z. PtZn intermetallic nanoalloy encapsulated in silicalite-1 for propane dehydrogenation. AIChE J. 2021, 67, e17295.

[55]

Kappers, M. J.; Van Der Maas, J. H. Correlation between CO frequency and Pt coordination number. A DRIFT study on supported Pt catalysts. Catal. Lett. 1991, 10, 365–373.

[56]

Yu, C. L.; Xu, H. Y.; Ge, Q. J.; Li, W. Z. Properties of the metallic phase of zinc-doped platinum catalysts for propane dehydrogenation. J. Mol. Catal. A: Chem. 2007, 266, 80–87.

[57]

Sun, G. D.; Zhao, Z. J.; Mu, R. T.; Zha, S.; Li, L. L.; Chen, S.; Zang, K. T.; Luo, J.; Li, Z. L.; Purdy, S. C. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 2018, 9, 4454.

[58]

Ma, Y.; Chen, X.; Guan, Y. J.; Xu, H.; Zhang, J. W.; Jiang, J. G.; Chen, L.; Xue, T.; Xue, Q. S.; Wei, F. et al. Skeleton-Sn anchoring isolated Pt site to confine subnanometric clusters within *BEA topology. J. Catal. 2021, 397, 44–57.

[59]

Qi, L.; Babucci, M.; Zhang, Y. F.; Lund, A.; Liu, L. M.; Li, J. W.; Chen, Y. Z.; Hoffman, A. S.; Bare, S. R.; Han, Y. et al. Propane dehydrogenation catalyzed by isolated Pt atoms in ≡SiOZn-OH nests in dealuminated zeolite beta. J. Am. Chem. Soc. 2021, 143, 21364–21378.

[60]

Omegna, A.; Vasic, M.; Anton van Bokhoven, J.; Pirngruber, G.; Prins, R. Dealumination and realumination of microcrystalline zeolite beta: An XRD, FTIR and quantitative multinuclear (MQ) MAS NMR study. Phys. Chem. Chem. Phys. 2004, 6, 447–452.

[61]

Janiszewska, E.; Macario, A.; Wilk, J.; Aloise, A.; Kowalak, S.; Nagy, J. B.; Giordano, G. The role of the defect groups on the silicalite-1 zeolite catalytic behavior. Micropor. Mesopor. Mater. 2013, 182, 220–228.

[62]

Song, M. X.; Zhang, B. F.; Zhai, Z. W.; Liu, S. B.; Wang, L.; Liu, G. Z. Highly dispersed Pt stabilized by ZnOx-Si on self-pillared zeolite nanosheets for propane dehydrogenation. Ind. Eng. Chem. Res. 2023, 62, 3853–3861.

[63]

Zhang, T. T.; Pei, C. L.; Sun, G. D.; Chen, S.; Zhao, Z. J.; Sun, S. J.; Lu, Z. P.; Xu, Y. Y.; Gong, J. L. Synergistic mechanism of platinum-GaOx catalysts for propane dehydrogenation. Angew. Chem., Int. Ed. 2022, 61, e202201453.

[64]

Lian, Z.; Ali, S.; Liu, T. F.; Si, C. W.; Li, B.; Su, D. S. Revealing the Janus character of the coke precursor in the propane direct dehydrogenation on Pt catalysts from a kMC simulation. ACS Catal. 2018, 8, 4694–4704.

[65]

Zhang, F. Y.; Zhou, W.; Xiong, X. W.; Wang, Y. H.; Cheng, K.; Kang, J. C.; Zhang, Q. H.; Wang, Y. Selective hydrogenation of CO2 to ethanol over sodium-modified rhodium nanoparticles embedded in zeolite silicalite-1. J. Phys. Chem. C 2021, 125, 24429–24439.

Nano Research
Pages 10881-10889
Cite this article:
Wei X, Cheng J, Li Y, et al. Bimetallic clusters confined inside silicalite-1 for stable propane dehydrogenation. Nano Research, 2023, 16(8): 10881-10889. https://doi.org/10.1007/s12274-023-5953-y
Topics:

1766

Views

14

Crossref

13

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 20 April 2023
Revised: 11 June 2023
Accepted: 23 June 2023
Published: 24 July 2023
© Tsinghua University Press 2023
Return