AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Self-healing Ga-based liquid metal/alloy anodes for rechargeable batteries

School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212000, China
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan 250061, China
Show Author Information

Graphical Abstract

This review focuses on the properties, applications, and key issues of liquid Ga-based metal/alloys as main anode and composite anode materials for batteries.

Abstract

With the rapid development of electronics, electric vehicles, and grid energy storage stations, higher requirements have been put forward for advanced secondary batteries. Liquid metal/alloy electrodes have been considered as a promising development direction to achieve excellent electrochemical performance in metal-ion batteries, due to their specific advantages including the excellent electrode kinetics and self-healing ability against microstructural electrode damage. For conventional liquid batteries, high temperatures are needed to keep electrode liquid and ensure the high conductivity of molten salt electrolytes, which also brings the corrosion and safety issues. Ga-based metal/alloys, which can be operated at or near room temperature, are potential candidates to circumvent the above problems. In this review, the properties and advantages of Ga-based metal/alloys are summarized. Then, Ga-based liquid metal/alloys as anodes in various metal-ion batteries are reviewed in terms of their self-healing ability, battery configurations, working mechanisms, and so on. Furthermore, some views on the future development of Ga-based electrodes in batteries are provided.

Electronic Supplementary Material

Download File(s)
12274_2023_5955_MOESM1_ESM.pdf (1.8 MB)

References

[1]

Zhang, S. L.; Liu, Y.; Fan, Q. N.; Zhang, C. F.; Zhou, T. F.; Kalantar-Zadeh, K.; Guo, Z. P. Liquid metal batteries for future energy storage. Energy Environ. Sci. 2021, 14, 4177–4202.

[2]

Liu, Y. K.; Zhao, C. Z.; Du, J.; Zhang, X. Q.; Chen, A. B.; Zhang, Q. Research progresses of liquid electrolytes in lithium-ion batteries. Small 2023, 19, 2205315.

[3]

Liang, Y. L.; Dong, H.; Aurbach, D.; Yao, Y. Current status and future directions of multivalent metal-ion batteries. Nat. Energy 2020, 5, 646–656.

[4]

Grey, C. P.; Hall, D. S. Prospects for lithium-ion batteries and beyond-a 2030 vision. Nat. Commun. 2020, 11, 6279.

[5]

Tian, Y. S.; Zeng, G. B.; Rutt, A.; Shi, T.; Kim, H.; Wang, J. Y.; Koettgen, J.; Sun, Y. Z.; Ouyang, B.; Chen, T. N. et al. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 2021, 121, 1623–1669.

[6]

Massé, R. C.; Uchaker, E.; Cao, G. Z. Beyond Li-ion: Electrode materials for sodium- and magnesium-ion batteries. Sci. China Mater. 2015, 58, 715–766.

[7]

Sacci, R. L.; Black, J. M.; Balke, N.; Dudney, N. J.; More, K. L.; Unocic, R. R. Nanoscale imaging of fundamental li battery chemistry: Solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett. 2015, 15, 2011–2018.

[8]

Gao, X. W.; Zhou, Y. N.; Han, D. Z.; Zhou, J. Q.; Zhou, D. Z.; Tang, W.; Goodenough, J. B. Thermodynamic understanding of Li-dendrite formation. Joule 2020, 4, 1864–1879.

[9]

Lee, B.; Paek, E.; Mitlin, D.; Lee, S. W. Sodium metal anodes: Emerging solutions to dendrite growth. Chem. Rev. 2019, 119, 5416–5460.

[10]

Shen, Y. L.; Wang, Y. J.; Miao, Y. C.; Yang, M.; Zhao, X. Y.; Shen, X. D. High-energy interlayer-expanded copper sulfide cathode material in non-corrosive electrolyte for rechargeable magnesium batteries. Adv. Mater. 2020, 32, 1905524.

[11]

Zhang, Y.; Liu, S. Q.; Ji, Y. J.; Ma, J. M.; Yu, H. J. Emerging nonaqueous aluminum-ion batteries: Challenges, status, and perspectives. Adv. Mater. 2018, 30, 1706310.

[12]

Bonnick, P.; Muldoon, J. A trip to Oz and a peak behind the curtain of magnesium batteries. Adv. Funct. Mater. 2020, 30, 1910510.

[13]

Nguyen, D. T.; Eng, A. Y. S.; Horia, R.; Sofer, Z.; Handoko, A. D.; Ng, M. F.; Seh, Z. W. Rechargeable magnesium batteries enabled by conventional electrolytes with multifunctional organic chloride additives. Energy Storage Mater. 2022, 45, 1120–1132.

[14]

Niu, J. Z.; Zhang, Z. H.; Aurbach, D. Alloy anode materials for rechargeable Mg ion batteries. Adv. Energy Mater. 2020, 10, 2000697.

[15]

Peng, M. Q.; Shin, K.; Jiang, L. X.; Jin, Y.; Zeng, K.; Zhou, X. L.; Tang, Y. B. Alloy-type anodes for high-performance rechargeable batteries. Angew. Chem., Int. Ed. 2022, 61, e202206770.

[16]

Wang, L. C.; Światowska, J.; Dai, S. R.; Cao, M. L.; Zhong, Z. C.; Shen, Y.; Wang, M. K. Promises and challenges of alloy-type and conversion-type anode materials for sodium-ion batteries. Mater. Today Energy 2019, 11, 46–60.

[17]

Corsi, J. S.; Welborn, S. S.; Stach, E. A.; Detsi, E. Insights into the degradation mechanism of nanoporous alloy-type Li-ion battery anodes. ACS Energy Lett. 2021, 6, 1749–1756.

[18]

Li, H. M.; Yin, H. Y.; Wang, K. L.; Cheng, S. J.; Jiang, K.; Sadoway, D. R. Liquid metal electrodes for energy storage batteries. Adv. Energy Mater. 2016, 6, 1600483.

[19]

Kim, H.; Boysen, D. A.; Newhouse, J. M.; Spatocco, B. L.; Chung, B.; Burke, P. J.; Bradwell, D. J.; Jiang, K.; Tomaszowska, A. A.; Wang, K. L. et al. Liquid metal batteries: Past, present, and future. Chem. Rev. 2013, 113, 2075–2099.

[20]

Bradwell, D. J.; Kim, H.; Sirk, A. H. C.; Sadoway, D. R. Magnesium-antimony liquid metal battery for stationary energy storage. J. Am. Chem. Soc. 2012, 134, 1895–1897.

[21]

Guo, X. L.; Ding, Y.; Yu, G. H. Design principles and applications of next-generation high-energy-density batteries based on liquid metals. Adv. Mater. 2021, 33, 2100052.

[22]

Guo, X. L.; Ding, Y.; Xue, L. G.; Zhang, L. Y.; Zhang, C. K.; Goodenough, J. B.; Yu, G. H. A self-healing room-temperature liquid-metal anode for alkali-ion batteries. Adv. Funct. Mater. 2018, 28, 1804649.

[23]

Guo, X. L.; Zhang, L. Y.; Ding, Y.; Goodenough, J. B.; Yu, G. H. Room-temperature liquid metal and alloy systems for energy storage applications. Energy Environ. Sci. 2019, 12, 2605–2619.

[24]

Song, C.; Yuan, Y.; Gu, D. C.; Chen, T.; Liu, Y. P.; Tang, A. T.; Wu, L.; Li, D. J.; Pan, F. S. The evaluation of Mg-Ga compounds as electrode materials for Mg-ion batteries via ab initio simulation. J. Electrochem. Soc. 2021, 168, 110539.

[25]

Xing, Z. R.; Fu, J. H.; Chen, S.; Gao, J. Y.; Zhao, R. Q.; Liu, J. Perspective on gallium-based room temperature liquid metal batteries. Front. Energy 2022, 16, 23–48.

[26]

Daeneke, T.; Khoshmanesh, K.; Mahmood, N.; De Castro, I. A.; Esrafilzadeh, D.; Barrow, S. J.; Dickey, M. D.; Kalantar-Zadeh, K. Liquid metals: Fundamentals and applications in chemistry. Chem. Soc. Rev. 2018, 47, 4073–4111.

[27]

Yu, S.; Kaviany, M. Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles. J. Chem. Phys. 2014, 140, 064303.

[28]

Jahn, D.; Plust, H. G. Possible use of gallium as negative electrode in galvanic cells. Nature 1963, 199, 806–807.

[29]

Zhang, Q.; Liu, J. Nano liquid metal as an emerging functional material in energy management, conversion and storage. Nano Energy 2013, 2, 863–872.

[30]

Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. N. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042–1048.

[31]

Wu, Y. P.; Huang, L.; Huang, X. K.; Guo, X. R.; Liu, D.; Zheng, D.; Zhang, X. L.; Ren, R.; Qu, D. Y.; Chen, J. H. A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life. Energy Environ. Sci. 2017, 10, 1854–1861.

[32]

Liu, T. Y.; Sen, P.; Kim, C. J. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J. Microelectromech. Syst. 2012, 21, 443–450.

[33]

Saint, J.; Morcrette, M.; Larcher, D.; Tarascon, J. M. Exploring the Li-Ga room temperature phase diagram and the electrochemical performances of the LixGay alloys vs Li. Solid State Ionics 2005, 176, 189–197.

[34]

Lee, K. T.; Jung, Y. S.; Kim, T.; Kim, C. H.; Kim, J. H.; Kwon, J. Y.; Oh, S. M. Liquid gallium electrode confined in porous carbon matrix as anode for lithium secondary batteries. Electrochem. Solid State Lett. 2008, 11, A21–A24.

[35]

Wang, J.; Wang, L.; Ma, Y.; Yang, S. B. Liquid gallium encapsulated in carbon nanofibers for high performance lithium storage. Mater. Lett. 2018, 228, 297–300.

[36]

Deshpande, R. D.; Li, J. C.; Cheng, Y. T.; Verbrugge, M. W. Liquid metal alloys as self-healing negative electrodes for lithium ion batteries. J. Electrochem. Soc. 2011, 158, A845–A849.

[37]

Yang, Y.; Hao, J.; Xue, J. Y.; Liu, S. K.; Chi, C. X.; Zhao, J. P.; Xu, Y. J.; Li, Y. Morphology regulation of Ga particles from ionic liquids and their lithium storage properties. New J. Chem. 2021, 45, 4408–4413.

[38]

Wang, L.; Welborn, S. S.; Kumar, H.; Li, M. N.; Wang, Z. Y.; Shenoy, V. B.; Detsi, E. High-rate and long cycle-life alloy-type magnesium-ion battery anode enabled through (de)magnesiation-induced near-room-temperature solid-liquid phase transformation. Adv. Energy Mater. 2019, 9, 1902086.

[39]

Song, M. J.; Niu, J. Z.; Cui, W. R.; Bai, Q. G.; Zhang, Z. H. Self-healing liquid Ga-based anodes with regulated wetting and working temperatures for advanced Mg ion batteries. J. Mater. Chem. A 2021, 9, 17019–17029.

[40]

Jiao, H. D.; Jiao, S. W.; Li, S. J.; Song, W. L.; Chen, H. S.; Tu, J. G.; Wang, M. Y.; Tian, D. H.; Fang, D. N. Liquid gallium as long cycle life and recyclable negative electrode for Al-ion batteries. Chem. Eng. J. 2020, 391, 123594.

[41]

Zhu, J. H.; Wu, Y. P.; Huang, X. K.; Huang, L.; Cao, M. Y.; Song, G. Q.; Guo, X. R.; Sui, X.; Ren, R.; Chen, J. H. Self-healing liquid metal nanoparticles encapsulated in hollow carbon fibers as a free-standing anode for lithium-ion batteries. Nano Energy 2019, 62, 883–889.

[42]

Li, T. Y.; Cui, Y.; Fan, L. L.; Zhou, X. W.; Ren, Y.; De Andrade, V.; De Carlo, F.; Zhu, L. K. A self-healing liquid metal anode with PEO-based polymer electrolytes for rechargeable lithium batteries. Appl. Mater. Today 2020, 21, 100802.

[43]

Wang, K. Z.; Hu, J.; Chen, T. Y.; Tang, J. T.; Wang, Z. Y.; Fan, N. N.; Zhang, W. J.; Wang, K. J. A high-performance room-temperature Li||Ga-Sn liquid metal battery for grid energy storage. Energy Technol. 2021, 9, 2100330.

[44]

Song, M. J.; Wang, Y.; Yu, B.; Yang, W. F.; Cheng, G. H.; Cui, W. R.; Zhang, Z. H. A high-performance room-temperature magnesium ion battery with self-healing liquid alloy anode mediated with a bifunctional intermetallic compound. Chem. Eng. J. 2022, 450, 138176.

[45]

Song, M. J.; Yu, B.; Cui, W. R.; Yang, W. F.; Bai, Q. G.; Zhang, Z. H. A self-healing room-temperature liquid eutectic GaSn anode with improved wettability for advanced Mg ion batteries. Chem. Eng. J. 2022, 435, 134903.

[46]

Huang, C. H.; Wang, X. D.; Cao, Q. P.; Zhang, D. X.; Jiang, J. Z. A self-healing anode for Li-ion batteries by rational interface modification of room-temperature liquid metal. ACS Appl. Energy Mater. 2021, 4, 12224–12231.

[47]

Yu, J. Y.; Xia, J.; Guan, X. G.; Xiong, G. Y.; Zhou, H. L.; Yin, S.; Chen, L. J.; Yang, Y.; Zhang, S. C.; Xing, Y. L. et al. Self-healing liquid metal confined in carbon nanofibers/carbon nanotubes paper as a free-standing anode for flexible lithium-ion batteries. Electrochim. Acta 2022, 425, 140721.

[48]

Ding, Y.; Guo, X. L.; Qian, Y. M.; Xue, L. G.; Dolocan, A.; Yu, G. H. Room-temperature all-liquid-metal batteries based on fusible alloys with regulated interfacial chemistry and wetting. Adv. Mater. 2020, 32, 2002577.

[49]

Huang, Y.; Wang, H. J.; Jiang, Y. B.; Jiang, X. Y. Preparation of room temperature liquid metal negative electrode for lithium ion battery in one step stirring. Mater. Lett. 2020, 276, 128261.

[50]

Wei, C. L.; Fei, H. F.; Tian, Y.; An, Y. L.; Zeng, G. F.; Feng, J. K.; Qian, Y. T. Room-temperature liquid metal confined in MXene paper as a flexible, freestanding, and binder-free anode for next-generation lithium-ion batteries. Small 2019, 15, 1903214.

[51]

Wu, Y. P.; Huang, X. K.; Huang, L.; Guo, X. R.; Ren, R.; Liu, D.; Qu, D. Y.; Chen, J. H. Self-healing liquid metal and Si composite as a high-performance anode for lithium-ion batteries. ACS Appl. Energy Mater. 2018, 1, 1395–1399.

[52]

Han, B.; Yang, Y.; Shi, X. B.; Zhang, G. Z.; Gong, L.; Xu, D. W.; Zeng, H. B.; Wang, C. Y.; Gu, M.; Deng, Y. H. Spontaneous repairing liquid metal/Si nanocomposite as a smart conductive-additive-free anode for lithium-ion battery. Nano Energy 2018, 50, 359–366.

[53]

Hapuarachchi, S. N. S.; Nerkar, J. Y.; Wasalathilake, K. C.; Chen, H.; Zhang, S. Q.; O’Mullane, A. P.; Yan, C. Utilizing room temperature liquid metals for mechanically robust silicon anodes in lithium-ion batteries. Batteries Supercaps 2018, 1, 122–128.

[54]

Huy, V. P. H.; So, S.; Kim, I. T.; Hur, J. Self-healing gallium phosphide embedded in a hybrid matrix for high-performance Li-ion batteries. Energy Storage Mater. 2021, 34, 669–681.

Nano Research
Pages 1366-1383
Cite this article:
Song M, Zhang Z. Self-healing Ga-based liquid metal/alloy anodes for rechargeable batteries. Nano Research, 2024, 17(3): 1366-1383. https://doi.org/10.1007/s12274-023-5955-9
Topics:

772

Views

11

Crossref

9

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 23 April 2023
Revised: 06 June 2023
Accepted: 23 June 2023
Published: 31 July 2023
© Tsinghua University Press 2023
Return