Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The polymer electrolyte membrane (PEM) electrolyzers are burdened with costly iridium (Ir)-based catalysts and high operation overpotentials for the oxygen evolution reaction (OER). The development of earth-abundant, highly active, and durable electrocatalysts to replace Ir is a critical step in reducing the cost of green hydrogen production. Here we develop a Ru5Mo4Ox binary oxide catalyst that exhibits high activity and stability in acidic OER. The electron-withdrawing property of Mo enriches the electrophilic surface oxygen species, which promotes acidic OER to proceed via the adsorbate evolution pathway. As a result, we achieve a 189 mV overpotential at 10 mA·cm−2 and a Tafel slope of 48.8 mV·dec−1. Our catalyst demonstrates a substantial 18-fold increase in intrinsic activity, as evaluated by turnover frequency, compared to commercially available RuO2 and IrO2 catalysts. Moreover, we report a stable OER operation at 10 mA·cm−2 for 100 h with a low degradation rate of 2.05 mV·h−1.
Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.
Ji, M. W.; Yang, X.; Chang, S. D.; Chen, W. X.; Wang, J.; He, D. S.; Hu, Y.; Deng, Q.; Sun, Y.; Li, B. et al. RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Res. 2022, 15, 1959–1965.
Liang, Y.; Cui, Y.; Chao, Y.; Han, N.; Sunarso, J.; Liang, P.; He, X.; Zhang, C.; Liu, S. M. Exsolution of CoFe(Ru) nanoparticles in Ru-doped (La0.8Sr0.2)0.9Co0.1Fe0.8Ru0.1O3−δ for efficient oxygen evolution reaction. Nano Res. 2022, 15, 6977–6986.
Zhu, F. Y.; Xue, J. Y.; Zeng, L. J.; Shang, J. R.; Lu, S. L.; Cao, X. Q.; Abrahams, B. F.; Gu, H. W.; Lang, J. P. One-pot pyrolysis synthesis of highly active Ru/RuOX nanoclusters for water splitting. Nano Res. 2022, 15, 1020–1026.
Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934.
Liu, Y. P.; Liang, X.; Chen, H.; Gao, R. Q.; Shi, L.; Yang, L.; Zou, X. X. Iridium-containing water-oxidation catalysts in acidic electrolyte. Chin. J. Catal. 2021, 42, 1054–1077.
Saba, S. M.; Müller, M.; Robinius, M.; Stolten, D. The investment costs of electrolysis—A comparison of cost studies from the past 30 years. Int. J. Hydrogen Energy 2018, 43, 1209–1223.
Schmidt, O.; Gambhir, A.; Staffell, I.; Hawkes, A.; Nelson, J.; Few, S. Future cost and performance of water electrolysis: An expert elicitation study. Int. J. Hydrogen Energy 2017, 42, 30470–30492.
Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.
Wang, K. X.; Wang, Y. L.; Yang, B.; Li, Z. J.; Qin, X. T.; Zhang, Q. H.; Lei, L. C.; Qiu, M.; Wu, G.; Hou, Y. Highly active ruthenium sites stabilized by modulating electron-feeding for sustainable acidic oxygen-evolution electrocatalysis. Energy Environ. Sci. 2022, 15, 2356–2365.
Su, J. W.; Ge, R. X.; Jiang, K. M.; Dong, Y.; Hao, F.; Tian, Z. Q.; Chen, G. X.; Chen, L. Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: Highly robust electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 2018, 30, 1801351.
Liu, H.; Wang, Z. L.; Li, M. X.; Zhao, X. P.; Duan, X. X.; Wang, S. Y.; Tan, G. Y.; Kuang, Y.; Sun, X. M. Rare-earth-regulated Ru–O interaction within the pyrochlore ruthenate for electrocatalytic oxygen evolution in acidic media. Sci. China Mater. 2021, 64, 1653–1661.
Wu, Q. L.; Jiang, K.; Han, J. H.; Chen, D. C.; Luo, M.; Lan, J.; Peng, M.; Tan, Y. W. Dynamic shrinkage of metal-oxygen bonds in atomic Co-doped nanoporous RuO2 for acidic oxygen evolution. Sci. China Mater. 2022, 65, 1262–1268.
Reier, T.; Nong, H. N.; Teschner, D.; Schlögl, R.; Strasser, P. Electrocatalytic oxygen evolution reaction in acidic environments-reaction mechanisms and catalysts. Adv. Energy Mater. 2017, 7, 1601275.
Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214.
Huang, Z. F.; Song, J. J.; Du, Y. H.; Xi, S. B.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329–338.
Roy, C.; Rao, R. R.; Stoerzinger, K. A.; Hwang, J.; Rossmeisl, J.; Chorkendorff, I.; Shao-Horn, Y.; Stephens, I. E. L. Trends in activity and dissolution on RuO2 under oxygen evolution conditions: Particles versus well-defined extended surfaces. ACS Energy Lett. 2018, 3, 2045–2051.
Ping, Y.; Nielsen, R. J.; Goddard III, W. A. The reaction mechanism with free energy barriers at constant potentials for the oxygen evolution reaction at the IrO2(110) surface. J. Am. Chem. Soc. 2017, 139, 149–155.
Massué, C.; Pfeifer, V.; van Gastel, M.; Noack, J.; Algara-Siller, G.; Cap, S.; Schlögl, R. Reactive electrophilic OI− species evidenced in high-performance iridium oxohydroxide water oxidation electrocatalysts. ChemSusChem 2017, 10, 4786–4798.
Grimaud, A.; Demortière, A.; Saubanère, M.; Dachraoui, W.; Duchamp, M.; Doublet, M. L.; Tarascon, J. M. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy 2017, 2, 16189.
Nong, H. N.; Reier, T.; Oh, H. S.; Gliech, M.; Paciok, P.; Vu, T. H. T.; Teschner, D.; Heggen, M.; Petkov, V.; Schlögl, R. et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nat. Catal. 2018, 1, 841–851.
Gao, J. J.; Xu, C. Q.; Hung, S. F.; Liu, W.; Cai, W. Z.; Zeng, Z. P.; Jia, C. M.; Chen, H. M.; Xiao, H.; Li, J. et al. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J. Am. Chem. Soc. 2019, 141, 3014–3023.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.
Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Pack, J. D.; Monkhorst, H. J. “Special points for Brillouin-zone integrations”—A reply. Phys. Rev. B 1977, 16, 1748–1749.
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.
Wen, Y. Z.; Chen, P. N.; Wang, L.; Li, S. Y.; Wang, Z. Y.; Abed, J.; Mao, X. N.; Min, Y. M.; Dinh, C. T.; De Luna, P. et al. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation. J. Am. Chem. Soc. 2021, 143, 6482–6490.
Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. Sect. A 1976, 32, 751–767.
Rao, R. R.; Kolb, M. J.; Hwang, J.; Pedersen, A. F.; Mehta, A.; You, H.; Stoerzinger, K. A.; Feng, Z. X.; Zhou, H.; Bluhm, H. et al. Surface orientation dependent water dissociation on rutile ruthenium dioxide. J. Phys. Chem. C 2018, 122, 17802–17811.
Morgan, D. J. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 2015, 47, 1072–1079.
Brox, B.; Olefjord, I. ESCA studies of MoO2 and MoO3. Surf. Interface Anal. 1988, 13, 3–6.
Choi, J. G.; Thompson, L. T. XPS study of as-prepared and reduced molybdenum oxides. Appl. Surf. Sci. 1996, 93, 143–149.
Tao, H. B.; Xu, Y. H.; Huang, X.; Chen, J. Z.; Pei, L. J.; Zhang, J. M.; Chen, J. G.; Liu, B. A general method to probe oxygen evolution intermediates at operating conditions. Joule 2019, 3, 1498–1509.
Zhang, J. M.; Tao, H. B.; Kuang, M.; Yang, H. B.; Cai, W. Z.; Yan, Q. Y.; Mao, Q.; Liu, B. Advances in thermodynamic-kinetic model for analyzing the oxygen evolution reaction. ACS Catal. 2020, 10, 8597–8610.
Ressler, T.; Wienold, J.; Jentoft, R. E.; Neisius, T. Bulk structural investigation of the reduction of MoO3 with propene and the oxidation of MoO2 with oxygen. J. Catal. 2002, 210, 67–83.
Li, L. W.; Morrill, M. R.; Shou, H.; Barton, D. G.; Ferrari, D.; Davis, R. J.; Agrawal, P. K.; Jones, C. W.; Sholl, D. S. On the relationship between Mo K-edge energies and DFT computed partial charges. J. Phys. Chem. C 2013, 117, 2769–2773.
Seguin, L.; Figlarz, M.; Cavagnat, R.; Lassègues, J. C. Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3·xH2O molybdenum trioxide hydrates. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc. 1995, 51, 1323–1344.
Huang, Y. S.; Pollak, F. H. Raman investigation of rutile RuO2. Solid State Commun. 1982, 43, 921–924.
Bhaskar, S.; Dobal, P. S.; Majumder, S. B.; Katiyar, R. S. X-ray photoelectron spectroscopy and micro-Raman analysis of conductive RuO2 thin films. J. Appl. Phys. 2001, 89, 2987–2992.
Tomikawa, K.; Kanno, H. Raman study of sulfuric acid at low temperatures. J. Phys. Chem. A 1998, 102, 6082–6088.
Wang, H. Y.; Hung, S. F.; Hsu, Y. Y.; Zhang, L. L.; Miao, J. W.; Chan, T. S.; Xiong, Q. H.; Liu, B. In situ spectroscopic identification of μ-OO bridging on spinel Co3O4 water oxidation electrocatalyst. J. Phys. Chem. Lett. 2016, 7, 4847–4853.