The effective management of bacterial infections that are resistant to multiple drugs remains a substantial clinical challenge. The eradication of drug-resistant bacteria and subsequent promotion of angiogenesis are imperative for the regeneration of the infected wounds. Here, a novel and facile peptide containing injectable hydrogel with sustained antibacterial and angiogenic capabilities is developed. The antibacterial peptide that consists of 11 residues (CM11, WKLFKKILKVL) is loaded onto acrylate-modified gelatin through charge interactions. A vascular endothelial growth factor mimetic peptide KLT (KLTWQELYQLKYKGI) with a GCG (Gly-Cys-Gly) modification at the N-terminal is covalently coupled through a visible light-induced thiol-ene reaction. In this reaction, the acrylate gelatin undergoes cross-linkage within seconds. Based on the physical/chemical double crosslinking strategy, the bioactive peptides achieve sustained and sequential release. The results show that the hydrogel significantly inhibits methicillin-resistant Staphylococcus aureus (MRSA) growth through the rapid release of CM11 peptides at early stage; it forms obvious growth inhibition zones against pathogenic bacterial strains. Moreover, cell counting kit-8 assay and scratch test confirm that the CM11/KLT-functionalized hydrogels promote cell proliferation and migration through the later release of KLT peptides. In a mouse skin wound infected with self-luminous MRSA, the CM11/KLT-functionalized hydrogels enhance wound healing, with rapidly bacterial infection reduction, lower expression of inflammatory factors, and neovascularization promotion. These results suggest that the rationally designed, sustained and sequential release CM11/KLT-functionalized hydrogels have huge potential in promoting the healing of multi-drug resistant bacterial infected wounds.
Zhang, Y.; Wu, H. X.; Li, P. P.; Liu, W. X.; Zhang, Y. L.; Dong, A. Dual-light-triggered in situ structure and function regulation of injectable hydrogels for high-efficient anti-infective wound therapy. Adv. Healthcare Mater. 2022, 11, 2101722.
Yi, S. X.; Zhou, Y.; Zhang, J. M.; Wang, M.; Zheng, S. H.; Yang, X.; Duan, L.; Reis, R. L.; Dai, F. Y.; Kundu, S. C. et al. Flat silk cocoon-based dressing: Daylight-driven rechargeable antibacterial membranes accelerate infected wound healing. Adv. Healthcare Mater. 2022, 11, 2201397.
Guan, T.; Li, J. Y.; Chen, C. Y.; Liu, Y. Self-assembling peptide-based hydrogels for wound tissue repair. Adv. Sci. (Weinh. ) 2022, 9, 2104165.
Jia, W.; Wu, Y. F.; Chen, Y. F.; He, D. S.; Li, J. P.; Wang, Y.; Wang, Z.; Zhu, W.; Chen, C.; Peng, Q. et al. Interface-induced formation of onion-like alloy nanocrystals by defects engineering. Nano Res. 2016, 9, 584–592.
Jiang, Y. X.; Rong, H. T.; Wang, Y. F.; Liu, S. G.; Xu, P.; Luo, Z.; Guo, L. M.; Zhu, T.; Rong, H. P.; Wang, D. S. et al. Single-atom cobalt nanozymes promote spinal cord injury recovery by anti-oxidation and neuroprotection. Nano Res 2023, in press, DOI: 10.1007/s12274-023-5588-z.
Xu, T. M.; Tian, Y. C.; Zhang, R.; Yu, B.; Cong, H. L.; Shen, Y. Q. Hydrogel vectors based on peptide and peptide-like substances: For treating bacterial infections and promoting wound healing. Appl. Mater. Today 2021, 25, 101224.
Kern, W. V.; Rieg, S. Burden of bacterial bloodstream infection-a brief update on epidemiology and significance of multidrug-resistant pathogens. Clin. Microbiol. Infect. 2020, 26, 151–157.
Luo, Y.; Song, Y. Z. Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and antibiofilm activities. Int. J. Mol. Sci. 2021, 22, 11401.
Mahdavi Abhari, F.; Pirestani, M.; Dalimi, A. Anti-amoebic activity of a cecropin-melittin hybrid peptide (CM11) against trophozoites of Entamoeba histolytica. Wien. Klin. Wochenschr. 2019, 131, 427–434.
Moosazadeh Moghaddam, M.; Eftekhary, M.; Erfanimanesh, S.; Hashemi, A.; Fallah Omrani, V.; Farhadihosseinabadi, B.; Lasjerdi, Z.; Mossahebi-Mohammadi, M.; Pal Singh Chauhan, N.; Seifalian, A. M. et al. Comparison of the antibacterial effects of a short cationic peptide and 1% silver bioactive glass against extensively drug-resistant bacteria, Pseudomonas aeruginosa and Acinetobacter baumannii, isolated from burn patients. Amino Acids 2018, 50, 1617–1628.
Moghaddam, M. M.; Barjini, K. A.; Ramandi, M. F.; Amani, J. Investigation of the antibacterial activity of a short cationic peptide against multidrug-resistant Klebsiella pneumoniae and Salmonella typhimurium strains and its cytotoxicity on eukaryotic cells. World J. Microbiol. Biotechnol. 2014, 30, 1533–1540.
Khalili, S.; Ebrahimzade, E.; Mohebali, M.; Shayan, P.; Mohammadi-Yeganeh, S.; Moosazadeh Moghaddam, M.; Elikaee, S.; Akhoundi, B.; Sharifi-Yazdi, M. K. Investigation of the antimicrobial activity of a short cationic peptide against promastigote and amastigote forms of Leishmania major (MHRO/IR/75/ER): An in vitro study. Exp. Parasitol. 2019, 196, 48–54.
Thapa, R. K.; Diep, D. B.; Tønnesen, H. H. Topical antimicrobial peptide formulations for wound healing: Current developments and future prospects. Acta Biomater. 2020, 103, 52–67.
Wang, C.; Hong, T. T.; Cui, P. F.; Wang, J. H.; Xia, J. Antimicrobial peptides towards clinical application: Delivery and formulation. Adv. Drug Deliv. Rev. 2021, 175, 113818.
Yang, X.; Guo, J. L.; Han, J.; Si, R. J.; Liu, P. P.; Zhang, Z. R.; Wang, A. M.; Zhang, J. Chitosan hydrogel encapsulated with LL-37 peptide promotes deep tissue injury healing in a mouse model. Mil. Med. Res. 2020, 7, 20.
Maleki, A.; He, J. H.; Bochani, S.; Nosrati, V.; Shahbazi, M. A.; Guo, B. L. Multifunctional photoactive hydrogels for wound healing acceleration. ACS Nano 2021, 15, 18895–18930.
Suo, H. N.; Hussain, M.; Wang, H.; Zhou, N. Y.; Tao, J.; Jiang, H.; Zhu, J. T. Injectable and pH-sensitive hyaluronic acid-based hydrogels with on-demand release of antimicrobial peptides for infected wound healing. Biomacromolecules 2021, 22, 3049–3059.
Tang, W.; Yu, Y. M.; Wang, J.; Liu, H.; Pan, H. B.; Wang, G. C.; Liu, C. S. Enhancement and orchestration of osteogenesis and angiogenesis by a dual-modular design of growth factors delivery scaffolds and 26SCS decoration. Biomaterials 2020, 232, 119645.
D'Andrea, L. D.; Iaccarino, G.; Fattorusso, R.; Sorriento, D.; Carannante, C.; Capasso, D.; Trimarco, B.; Pedone, C. Targeting angiogenesis: Structural characterization and biological properties of a de novo engineered VEGF mimicking peptide. Proc. Natl. Acad. Sci. USA 2005, 102, 14215–14220.
Wang, G. Y.; Yuan, N.; Li, N. Y.; Wei, Q. J.; Qian, Y. P.; Zhang, J.; Qin, M.; Wang, Y. G.; Dong, S. W. Vascular endothelial growth factor mimetic peptide and parathyroid hormone (1-34) delivered via a blue-light-curable hydrogel synergistically accelerate bone regeneration. ACS Appl. Mater. Interfaces 2022, 14, 35319–35332.
Lu, J. J.; Guan, F. Y.; Cui, F. Z.; Sun, X. D.; Zhao, L. Y.; Wang, Y.; Wang, X. M. Enhanced angiogenesis by the hyaluronic acid hydrogels immobilized with a VEGF mimetic peptide in a traumatic brain injury model in rats. Regen. Biomater. 2019, 6, 325–334.
Jang, M. J.; Bae, S. K.; Jung, Y. S.; Kim, J. C.; Kim, J. S.; Park, S. K.; Suh, J. S.; Yi, S. J.; Ahn, S. H.; Lim, J. O. Enhanced wound healing using a 3D printed VEGF-mimicking peptide incorporated hydrogel patch in a pig model. Biomed. Mater. 2021, 16, 045013.
Liang, Y. P.; He, J. H.; Guo, B. L. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021, 15, 12687–12722.
Wang, L.; Zhang, X. H.; Yang, K.; Fu, Y. V.; Xu, T. S.; Li, S. L.; Zhang, D. W.; Wang, L. N.; Lee, C. S. A novel double-crosslinking-double-network design for injectable hydrogels with enhanced tissue adhesion and antibacterial capability for wound treatment. Adv. Funct. Mater. 2020, 30, 1904156.
Hoyle, C. E.; Bowman, C. N. Thiol-Ene click chemistry. Angew. Chem., Int. Ed. 2010, 49, 1540–1573.
Rydholm, A. E.; Bowman, C. N.; Anseth, K. S. Degradable thiol-acrylate photopolymers: Polymerization and degradation behavior of an in situ forming biomaterial. Biomaterials 2005, 26, 4495–4506.
Tyson, E. L.; Niemeyer, Z. L.; Yoon, T. P. Redox mediators in visible light photocatalysis: Photocatalytic radical thiol-Ene additions. J. Org. Chem. 2014, 79, 1427–1436.
Xu, Z. J.; Han, S. Y.; Gu, Z. P.; Wu, J. Advances and impact of antioxidant hydrogel in chronic wound healing. Adv. Healthcare Mater. 2020, 9, 1901502.
Li, L. L.; Lu, C. L.; Wang, L.; Chen, M.; White, J.; Hao, X. J.; McLean, K. M.; Chen, H.; Hughes, T. C. Gelatin-based photocurable hydrogels for corneal wound repair. ACS Appl. Mater. Interfaces 2018, 10, 13283–13292.
Sani, E. S.; Lara, R. P.; Aldawood, Z.; Bassir, S. H.; Nguyen, D.; Kantarci, A.; Intini, G.; Annabi, N. An antimicrobial dental light curable Bioadhesive hydrogel for treatment of Peri-implant diseases. Matter 2019, 1, 926–944.
Pensa, N. W.; Curry, A. S.; Reddy, M. S.; Bellis, S. L. Sustained delivery of the angiogenic QK peptide through the use of polyglutamate domains to control peptide release from bone graft materials. J. Biomed. Mater. Res. A 2019, 107, 2764–2773.
Xiao, P.; Zhu, X.; Sun, J. P.; Zhang, Y. H.; Qiu, W. J.; Li, J. Q.; Wu, X. J. Cartilage tissue miR-214-3p regulates the TrkB/ShcB pathway paracrine VEGF to promote endothelial cell migration and angiogenesis. Bone 2021, 151, 116034.
Pensa, N. W.; Curry, A. S.; Reddy, M. S.; Bellis, S. L. The addition of a polyglutamate domain to the angiogenic QK peptide improves peptide coupling to bone graft materials leading to enhanced endothelial cell activation. PLoS One 2019, 14, e0213592.
Huang, Y.; Mu, L.; Zhao, X.; Han, Y.; Guo, B. L. Bacterial growth-induced tobramycin smart release self-healing hydrogel for Pseudomonas aeruginosa-infected burn wound healing. ACS Nano 2022, 16, 13022–13036.
Liang, Y. P.; Li, M.; Yang, Y. T.; Qiao, L. P.; Xu, H. R.; Guo, B. L. pH/Glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing. ACS Nano 2022, 16, 3194–3207.