AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced carbon capture with motif-rich amino acid loaded defective robust metal-organic frameworks

Qi-Ye Ju1,3,4Jia-Jia Zheng 2Li Xu1,3,4Hai-Yan Jiang1,5Zi-Qian Xue6Lu Bai1,5Yang-Yang Guo1,5( )Ming-Shui Yao1,5( )Ting-Yu Zhu1,5( )
State Key Laboratory of Multi-phase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
Show Author Information

Graphical Abstract

We demonstrate a channel broadening facilitated loading of functional motif-rich amino acids (AAs) into the defective and robust porous frameworks via the combined defect-engineering and post-synthetic methods. The resulting abundant active sites in a confined nano space endow it with good carbon dioxide (CO2) adsorption capacity and selectivity of CO2/N2.

Abstract

The use of metal-organic frameworks (MOFs) as solid adsorption materials for carbon capture is promising, but achieving efficient and reversible adsorption with a balance of capacity and selectivity for carbon dioxide (CO2) over N2 remains a challenge. To take full advantage of the strong channel traffic and robustness of MOFs with relatively small pores, it is highly necessary to employ a defect-engineering strategy to construct a broader channel structure that can facilitate the loading of functional motif-rich amino acids (AAs). This strategy can greatly enhance the CO2 adsorption performance of MOF. In this study, motif-rich amino acids are loaded into the defective and robust porous frameworks via combined defect-engineering and post-synthetic methods. The defective Zr/Hf-MOF-808s modified with AAs, especially for the 18 mol% 4-nitroisophthalic acid, generated defective products allowing for the loading of L-serine (L-Ser). This modification resulted in a significant improvement in both the adsorption capacity (248% improvement at 298 K, 100 kPa) and the selectivity of CO2/N2 using the ideal adsorbed solution theory (IAST), with the selectivity increasing to 120.55 and 38.27 at 15 and 100 kPa, respectively, while maintaining good cycling performance. Density functional theory (DFT) simulation, CO2 temperature-programmed desorption (CO2-TPD), and in situ Fourier transform infrared spectroscopy (FTIR) were further employed to have a better understanding of the enhanced CO2 adsorption capacity. Interestingly, unlike the AAs loaded pristine MOF-808s that showed the best CO2 adsorption capacity with the loading of short and small glycine (Gly), the broadened channel size in our work enables the loading of functional motif-rich L-serine, which brings more active binding sites, improving CO2 adsorption.

Electronic Supplementary Material

Download File(s)
12274_2023_5961_MOESM1_ESM.pdf (7 MB)

References

[1]

Wei, Y. M.; Kang, J. N.; Liu, L. C.; Li, Q.; Wang, P. T.; Hou, J. J.; Liang, Q. M.; Liao, H.; Huang, S. F.; Yu, B. Y. A proposed global layout of carbon capture and storage in line with a 2 °C climate target. Nat. Climate Change 2021, 11, 112–118.

[2]

Tian, W. J.; Zhang, H. Y.; Duan, X. G.; Sun, H. Q.; Shao, G. S.; Wang, S. B. Porous carbons: Structure-oriented design and versatile applications. Adv. Funct. Mater. 2020, 30, 1909265.

[3]

Wilkins, N. S.; Rajendran, A. Measurement of competitive CO2 and N2 adsorption on zeolite 13X for post-combustion CO2 capture. Adsorption 2019, 25, 115–133.

[4]

Sari Yilmaz, M. The CO2 adsorption performance of aminosilane-modified mesoporous silicas. J. Therm. Anal. Calorim. 2021, 146, 2241–2251.

[5]

Boyd, P. G.; Chidambaram, A.; García-Díez, E.; Ireland, C. P.; Daff, T. D.; Bounds, R.; Gładysiak, A.; Schouwink, P.; Moosavi, S. M.; Maroto-Valer, M. M. et al. Data-driven design of metal-organic frameworks for wet flue gas CO2 capture. Nature 2019, 576, 253–256.

[6]

Ahmadi, M.; Taş, E.; Kılıç, A.; Kumbaracı, V.; Talınlı, N.; Ahunbay, M. G.; Tantekin-Ersolmaz, Ş. B. Highly CO2 selective microporous metal-imidazolate framework-based mixed matrix membranes. ACS. Appl. Mater. Interfaces 2017, 9, 35936–35946.

[7]

Li, Y. H.; Xiao, J. Z.; Guo, Y. Y.; Han, N.; Yuan, F. L.; Chen, Y. F.; Yao, M. S. Dynamic apertures with diffusion-regulatory functionality in soft porous crystals: A key to solving the century puzzle on isotopologues separation. Nano Res. 2023, 16, 3254–3255.

[8]

Yao, M. S.; Otake, K. I.; Zheng, J.; Tsujimoto, M.; Gu, Y. F.; Zheng, L.; Wang, P.; Mohana, S.; Bonneau, M.; Koganezawa, T. et al. Integrated soft porosity and electrical properties of conductive-on-insulating metal-organic framework nanocrystals. Angew. Chem. Int. Ed. Engl. 2023, 202303903.

[9]

Al-Naddaf, Q.; Rownaghi, A. A.; Rezaei, F. Multicomponent adsorptive separation of CO2, CO, CH4, N2, and H2 over core–shell zeolite-5a@MOF-74 composite adsorbents. Chem. Eng. J. 2020, 384, 123251.

[10]

Chen, K. J.; Madden, D. G.; Mukherjee, S.; Pham, T.; Forrest, K. A.; Kumar, A.; Space, B.; Kong, J.; Zhang, Q. Y.; Zaworotko, M. J. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. Science 2019, 366, 241–246.

[11]

Krause, S.; Bon, V.; Senkovska, I.; Stoeck, U.; Wallacher, D.; Többens, D. M.; Zander, S.; Pillai, R. S.; Maurin, G.; Coudert, F. X. et al. A pressure-amplifying framework material with negative gas adsorption transitions. Nature 2016, 532, 348–352.

[12]

Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.

[13]

Katsoulidis, A. P.; Antypov, D.; Whitehead, G. F. S.; Carrington, E. J.; Adams, D. J.; Berry, N. G.; Darling, G. R.; Dyer, M. S.; Rosseinsky, M. J. Chemical control of structure and guest uptake by a conformationally mobile porous material. Nature 2019, 565, 213–217.

[14]

Kondo, M.; Yoshitomi, T.; Matsuzaka, H.; Kitagawa, S.; Seki, K. Three-dimensional framework with channeling cavities for small molecules: {[M2(4,4′-bpy)3(NO3)4xH2O}n (M = Co, Ni, Zn). Angew. Chem., Int. Ed. 1997, 36, 1725–1727.

[15]

Mondloch, J. E.; Katz, M. J.; Isley Iii, W. C.; Ghosh, P.; Liao, P. L.; Bury, W.; Wagner, G. W.; Hall, M. G.; DeCoste, J. B.; Peterson, G. W. et al. Destruction of chemical warfare agents using metal-organic frameworks. Nat. Mater. 2015, 14, 512–516.

[16]

Liao, P. Q.; Huang, N. Y.; Zhang, W. X.; Zhang, J. P.; Chen, X. M. Controlling guest conformation for efficient purification of butadiene. Science 2017, 356, 1193–1196.

[17]

Allendorf, M. D.; Dong, R. H.; Feng, X. L.; Kaskel, S.; Matoga, D.; Stavila, V. Electronic devices using open framework materials. Chem. Rev. 2020, 120, 8581–8640.

[18]

Li, Z. Y.; Shi, K. R.; Zhai, L. Y.; Wang, Z. Z.; Wang, H. Y.; Zhao, Y.; Wang, J. J. Constructing multiple sites of metal-organic frameworks for efficient adsorption and selective separation of CO2. Sep. Purif. Technol. 2023, 307, 122725.

[19]

Hwang, Y. K.; Hong, D. Y.; Chang, J. S.; Jhung, S. H.; Seo, Y. K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Férey, G. Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angew. Chem. 2008, 120, 4212–4216.

[20]

Kim, E. J.; Siegelman, R. L.; Jiang, H. Z. H.; Forse, A. C.; Lee, J. H.; Martell, J. D.; Milner, P. J.; Falkowski, J. M.; Neaton, J. B.; Reimer, J. A. et al. Cooperative carbon capture and steam regeneration with tetraamine-appended metal-organic frameworks. Science 2020, 369, 392–396.

[21]

Gu, C.; Hosono, N.; Zheng, J. J.; Sato, Y.; Kusaka, S.; Sakaki, S.; Kitagawa, S. Design and control of gas diffusion process in a nanoporous soft crystal. Science 2019, 363, 387–391.

[22]

Ramezani, R.; Mazinani, S.; Di Felice, R. State-of-the-art of CO2 capture with amino acid salt solutions. Rev. Chem. Eng. 2022, 38, 273–299.

[23]

Murshid, G.; Ahmad Butt, W.; Garg, S. Investigation of thermophysical properties for aqueous blends of sarcosine with 1-(2-aminoethyl) piperazine and diethylenetriamine as solvents for CO2 absorption. J. Mol. Liq. 2019, 278, 584–591.

[24]

Zhao, Y. X.; Ge, H.; Miao, Y. Y.; Chen, J. X.; Cai, W. CO2 capture ability of Cu-based metal-organic frameworks synergized with amino acid-functionalized layered materials. Catal. Today 2020, 356, 604–612.

[25]

Lyu, H.; Chen, O. I. F.; Hanikel, N.; Hossain, M. I.; Flaig, R. W.; Pei, X. K.; Amin, A.; Doherty, M. D.; Impastato, R. K.; Glover, T. G. et al. Carbon dioxide capture chemistry of amino acid functionalized metal-organic frameworks in humid flue gas. J. Am. Chem. Soc. 2022, 144, 2387–2396.

[26]

Xue, Z. Q.; Liu, K.; Liu, Q. L.; Li, Y. L.; Li, M. R.; Su, C. Y.; Ogiwara, N.; Kobayashi, H.; Kitagawa, H.; Liu, M. et al. Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat. Commun. 2019, 10, 5048.

[27]

Ren, J.; Ledwaba, M.; Musyoka, N. M.; Langmi, H. W.; Mathe, M.; Liao, S.; Pang, W. Structural defects in metal-organic frameworks (MOFs): Formation, detection and control towards practices of interests. Coordin. Chem. Rev. 2017, 349, 169–197.

[28]

Bakhtiari, L.; Javadpour, J.; Rezaie, H. R.; Erfan, M.; Mazinani, B.; Aminian, A. Pore size control in the synthesis of hydroxyapatite nanoparticles: The effect of pore expander content and the synthesis temperature. Ceram. Int. 2016, 42, 11259–11264.

[29]

Lammert, M.; Glißmann, C.; Stock, N. Tuning the stability of bimetallic Ce(Ⅳ)/Zr(Ⅳ)-based MOFs with UiO-66 and MOF-808 structures. Dalton Trans. 2017, 46, 2425–2429.

[30]

Le, V. N.; Vo, T. K.; Yoo, K. S.; Kim, J. Enhanced CO2 adsorption performance on amino-defective UiO-66 with 4-amino benzoic acid as the defective linker. Sep. Purif. Technol. 2021, 274, 119079.

[31]

Thür, R.; Van Velthoven, N.; Lemmens, V.; Bastin, M.; Smolders, S.; De Vos, D.; Vankelecom, I. F. J. Modulator-mediated functionalization of MOF-808 as a platform tool to create high-performance mixed-matrix membranes. ACS. Appl. Mater. Interfaces 2019, 11, 44792–44801.

[32]

Gheorghe, A.; Strudwick, B.; Dawson, D. M.; Ashbrook, S. E.; Woutersen, S.; Dubbeldam, D.; Tanase, S. Synthesis of chiral MOF-74 frameworks by post-synthetic modification by using an amino acid. Chem. -Eur. J. 2020, 26, 13957–13965.

[33]

Zhu, W. F.; Wang, L. Z.; Cao, H. H.; Guo, R. L.; Wang, C. F. Introducing defect-engineering 2D layered MOF nanosheets into Pebax matrix for CO2/CH4 separation. J. Membrane Sci. 2023, 669, 121305.

[34]

Tao, Y.; Yang, B. G.; Wang, F. Y.; Yan, Y. H.; Hong, X. Y.; Xu, H. H.; Xia, M. Z.; Wang, F. Y. Green synthesis of MOF-808 with modulation of particle sizes and defects for efficient phosphate sequestration. Sep. Purif. Technol. 2022, 300, 121825.

[35]

Shi, W.; Zhang, X.; Ji, Y.; Zhao, Z.; Li, W.; Jia, X. Sustainable preparation of bio-based polybenzoxazine resins from amino acid and their application in CO2 adsorption. ACS Sustainable Chem. Eng. 2019, 7, 17313–17324.

[36]

Wang, X. Y.; Zheng, K. Y.; Peng, Z. X.; Liu, B. Y.; Jia, X. Q.; Tian, J. Exploiting proton masking to protect amino achieve efficient capture CO2 by amino-acids deep eutectic solvents. Sep. Purif. Technol. 2022, 299, 121787.

[37]

Chen, Z.; Zhang, P.; Wu, H.; Sun, S. H.; You, X. D.; Yuan, B.; Hou, J.; Duan, C. J.; Jiang, Z. Y. Incorporating amino acids functionalized graphene oxide nanosheets into Pebax membranes for CO2 separation. Sep. Purif. Technol. 2022, 288, 120682.

[38]

Duong, T. D.; Sapchenko, S. A.; Da Silva, I.; Godfrey, H. G. W.; Cheng, Y. Q.; Daemen, L. L.; Manuel, P.; Frogley, M. D.; Cinque, G.; Ramirez-Cuesta, A. J. et al. Observation of binding of carbon dioxide to nitro-decorated metal-organic frameworks. Chem. Sci. 2020, 11, 5339–5346.

[39]

Jahromi, F. B.; Elhambakhsh, A.; Keshavarz, P.; Panahi, F. Insight into the application of amino acid-functionalized MIL-101(Cr) micro fluids for high-efficiency CO2 absorption: Effect of amine number and surface area. Fuel 2023, 334, 126603.

[40]

Phan, D. P.; Le, V. N.; Nguyen, T. H.; Kim, H. B.; Park, E. D.; Kim, J.; Lee, E. Y. Effect of amino-defective-MOF materials on the selective hydrodeoxygenation of fatty acid over Pt-based catalysts. J. Catal. 2021, 400, 283–293.

[41]

Wang, Y. F.; Xu, J. H.; Lin, X. L.; Wang, B. L.; Zhang, Z. G.; Xu, Y. S.; Suo, Y. G. Facile synthesis of MOF-5-derived porous carbon with adjustable pore size for CO2 capture. J. Solid State Chem. 2023, 322, 123984.

[42]

Venturi, D. M.; Notari, M. S.; Bondi, R.; Mosconi, E.; Kaiser, W.; Mercuri, G.; Giambastiani, G.; Rossin, A.; Taddei, M.; Costantino, F. Increased CO2 affinity and adsorption selectivity in MOF-801 fluorinated analogues. ACS Appl. Mater. Interfaces 2022, 14, 40801–40811.

[43]

Vo, T. K.; Nguyen, V. C.; Quang, D. T.; Park, B. J.; Kim, J. Formation of structural defects within UIO-66(Zr)-(OH)2 framework for enhanced CO2 adsorption using a microwave-assisted continuous-flow tubular reactor. Micropor. Mesopor. Mater. 2021, 312, 110746.

[44]

Wong, Y.; Choi, Y. H.; Tanaka, S.; Yoshioka, H.; Mukai, K.; Halim, H. H.; Mohamed, A. R.; Inagaki, K.; Hamamoto, Y.; Hamada, I. et al. Adsorption of CO2 on terrace, step, and defect sites on Pt surfaces: A combined TPD, XPS, and DFT study. J. Phys. Chem. C 2021, 125, 23657–23668.

[45]

Zhu, B. C.; Zhang, L. Y.; Xu, D. F.; Cheng, B.; Yu, J. G. Adsorption investigation of CO2 on g-C3N4 surface by DFT calculation. J. CO2 Util. 2017, 21, 327–335.

[46]

Yang, B.; Wheeler, J. I.; Sorensen, B.; Steagall, R.; Nielson, T.; Yao, J. H.; Mendez-Arroyo, J.; Ess, D. H. Computational determination of coordination structure impact on adsorption and acidity of pristine and sulfated MOF-808. Mater. Adv. 2021, 2, 4246–4254.

[47]

Xie, C.; Yan, D. F.; Chen, W.; Zou, Y. Q.; Chen, R.; Zang, S. Q.; Wang, Y. Y.; Yao, X. D.; Wang, S. Y. Insight into the design of defect electrocatalysts: From electronic structure to adsorption energy. Mater. Today 2019, 31, 47–68.

[48]

Erkartal, M.; Sen, U. Boronic acid moiety as functional defect in UiO-66 and its effect on hydrogen uptake capacity and selective CO2 adsorption: A comparative study. ACS Appl. Mater. Interfaces 2018, 10, 787–795.

[49]

Zhou, Y. B.; Tan, P.; He, Z. Q.; Zhang, C.; Fang, Q. Y.; Chen, G. CO2 adsorption performance of nitrogen-doped porous carbon derived from licorice residue by hydrothermal treatment. Fuel 2022, 311, 122507.

[50]

Gu, Y.; Anjali, B. A.; Yoon, S.; Choe, Y.; Chung, Y. G.; Park, D. W. Defect-engineered MOF-801 for cycloaddition of CO2 with epoxides. J. Mater. Chem. A 2022, 10, 10051–10061.

[51]

Marsal, A.; Rossinyol, E.; Bimbela, F.; Tellez, C.; Coronas, J.; Cornet, A.; Morante, J. R. Characterisation of LaOCl sensing materials using CO2-TPD, XRD, TEM and XPS. Sensor. Actuat. B Chem. 2005, 109, 38–43.

[52]

Qin, M. H.; Shi, Y. M.; Lu, D. K.; Deng, J. J.; Shi, G. Y.; Zhou, T. S. High-performance Hf/Ti-doped defective Zr-MOFs for cefoperazone adsorption: Behavior and mechanisms. Appl. Surf. Sci. 2022, 595, 153494.

[53]

Chen, L. Y.; Wang, H. F.; Li, C. X.; Xu, Q. Bimetallic metal-organic frameworks and their derivatives. Chem. Sci. 2020, 11, 5369–5403.

[54]

Song, L. F.; Xue, C.; Xia, H. Y.; Qiu, S. J.; Sun, L. X.; Chen, H. X. Effects of alkali metal (Li, Na, and K) incorporation in NH2-MIL125(Ti) on the performance of CO2 adsorption. Materials 2019, 12, 844.

[55]

Gao, Z. Y.; Liang, L.; Zhang, X.; Xu, P.; Sun, J. M. Facile one-pot synthesis of Zn/Mg-MOF-74 with unsaturated coordination metal centers for efficient CO2 adsorption and conversion to cyclic carbonates. ACS. Appl. Mater. Interfaces 2021, 13, 61334–61345.

[56]

Zhu, H. J.; Xue, W. J.; Huang, H. L.; Chen, L.; Liu, H. Y.; Zhong, C. L. Water boosted CO2/C2H2 separation in L-Arginine functionalized metal-organic framework. Nano Res. 2023, 16, 6113–6119.

[57]

Uehara, Y.; Karami, D.; Mahinpey, N. Amino acid ionic liquid-modified mesoporous silica sorbents with remaining surfactant for CO2 capture. Adsorption 2019, 25, 703–716.

[58]

Chaterjee, S.; Krupadam, R. J. Amino acid-imprinted polymers as highly selective CO2 capture materials. Environ. Chem. Lett. 2019, 17, 465–472.

[59]

Maity, D. K.; Halder, A.; Bhattacharya, B.; Das, A.; Ghoshal, D. Selective CO2 adsorption by nitro functionalized metal organic frameworks. Cryst. Growth Des. 2016, 16, 1162–1167.

[60]

Flaig, R. W.; Osborn Popp, T. M.; Fracaroli, A. M.; Kapustin, E. A.; Kalmutzki, M. J.; Altamimi, R. M.; Fathieh, F.; Reimer, J. A.; Yaghi, O. M. The chemistry of CO2 capture in an amine-functionalized metal-organic framework under dry and humid conditions. J. Am. Chem. Soc. 2017, 139, 12125–12128.

[61]

Jun, H. J.; Yoo, D. K.; Jhung, S. H. Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2 under low pressure. J. CO2 Util. 2022, 58, 101932.

[62]

Jian, Y. Y.; Qu, D. Y.; Guo, L. H.; Zhu, Y. J.; Su, C.; Feng, H. R.; Zhang, G. J.; Zhang, J.; Wu, W. W.; Yao, M. S. The prior rules of designing Ti3C2Tx MXene-based gas sensors. Front. Chem. Sci. Eng. 2021, 15, 505–517.

[63]

Yao, M. S.; Otake, K. I.; Xue, Z. Q.; Kitagawa, S. Concluding remarks: Current and next generation MOFs. Faraday Discuss. 2021, 231, 397–417.

[64]

Tang, Y. C.; Wang, Z. S.; Yi, H.; Zhou, M. Y.; Zhou, D. D.; Zhang, J. P.; Chen, X. M. Water-stable metal azolate frameworks showing interesting flexibilities for highly effective bioethanol dehydration. Angew. Chem., Int. Ed. 2023, 62, e202303374.

[65]

He, T.; Kong, X. J.; Bian, Z. X.; Zhang, Y. Z.; Si, G. R.; Xie, L. H.; Wu, X. Q.; Huang, H.; Chang, Z.; Bu, X. H. et al. Trace removal of benzene vapour using double-walled metal-dipyrazolate frameworks. Nat. Mater. 2022, 21, 689–695.

Nano Research
Pages 2004-2010
Cite this article:
Ju Q-Y, J-J-Z, Xu L, et al. Enhanced carbon capture with motif-rich amino acid loaded defective robust metal-organic frameworks. Nano Research, 2024, 17(3): 2004-2010. https://doi.org/10.1007/s12274-023-5961-y
Topics:

881

Views

13

Crossref

14

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 03 May 2023
Revised: 22 June 2023
Accepted: 26 June 2023
Published: 10 August 2023
© Tsinghua University Press 2023
Return