Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
It is still a lack of bifunctional catalysts for ammonia oxidation reaction (AOR) and hydrogen evolution reaction (HER) due to their different reaction mechanisms. In this work, P is doped into PtZn alloy by calcination with NaH2PO2 as P source to induce the lattice tensile strain of Pt and the electronic interaction between P and Zn, which optimizes the AOR and HER activity simultaneously. The sample with the optimal P content can drive the AOR peak current density of 293.6 mA·mgPt−1, which is almost 2.7 times of Pt. For HER, the overpotential at −10 mA·cm−2 is only 23 mV with Tafel slope of 34.1 mV·dec−1. Furthermore, only 0.59 V is needed to obtain 50 mA·mgPt−1 for ammonia electrolysis under a two-electrode system. Therefore, this work shows an ingenious method to design bifunctional catalysts for ammonia electrolysis.
Züttel, A. Materials for hydrogen storage. Mater. Today 2003, 6, 24–33.
Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverria, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent radii revisited. Dalton Trans. 2008, 2832–2838.
Chang, F.; Gao, W. B.; Guo, J. P.; Chen, P. Emerging materials and methods toward ammonia-based energy storage and conversion. Adv. Mater. 2021, 33, 2005721.
Guo, W. H.; Zhang, K. X.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem. Soc. Rev. 2019, 48, 5658–5716.
Guerra, C. F.; Reyes-Bozo, L.; Vyhmeister, E.; Caparrós, M. J.; Salazar, J. L.; Clemente-Jul, C. Technical-economic analysis for a green ammonia production plant in Chile and its subsequent transport to Japan. Renew. Energy 2020, 157, 404–414.
MacFarlane, D. R.; Cherepanov, P. V.; Choi, J.; Suryanto, B. H. R.; Hodgetts, R. Y.; Bakker, J. M.; Vallana, F. M. F.; Simonov, A. N. A roadmap to the ammonia economy. Joule 2020, 4, 1186–1205.
He, S.; Somayaji, V.; Wang, M. D.; Lee, S. H.; Geng, Z. J.; Zhu, S. Y.; Novello, P.; Varanasi, C. V.; Liu, J. High entropy spinel oxide for efficient electrochemical oxidation of ammonia. Nano Res. 2022, 15, 4785–4791.
Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, e9120010.
Lee, S. A.; Lee, M. G.; Jang, H. W. Catalysts for electrochemical ammonia oxidation: Trend, challenge, and promise. Sci. China Mater. 2022, 65, 3334–3352.
Tian, Y. R.; Mao, Z. X.; Wang, L. Q.; Liang, J. Green chemistry: Advanced electrocatalysts and system design for ammonia oxidation. Small Struct. 2023, 4, 2200266.
Adli, N. M.; Zhang, H.; Mukherjee, S.; Wu, G. Review—Ammonia oxidation electrocatalysis for hydrogen generation and fuel cells. J. Electrochem. Soc. 2018, 165, J3130–J3147.
Lyu, Z. H.; Fu, J. J.; Tang, T.; Zhang, J. N.; Hu, J. S. Design of ammonia oxidation electrocatalysts for efficient direct ammonia fuel cells. EnergyChem 2023, 5, 100093.
De Vooys, A. C. A.; Koper, M. T. M.; Van Santen, R. A.; Van Veen, J. A. R. The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes. J. Electroanal. Chem. 2001, 506, 127–137.
Sun, H. Y.; Xu, G. R.; Li, F. M.; Hong, Q. L.; Jin, P. J.; Chen, P.; Chen, Y. Hydrogen generation from ammonia electrolysis on bifunctional platinum nanocubes electrocatalysts. J. Energy Chem. 2020, 47, 234–240.
Xue, Q.; Zhao, Y.; Zhu, J. Y.; Ding, Y.; Wang, T. J.; Sun, H. Y.; Li, F. M.; Chen, P.; Jin, P. J.; Yin, S. B. et al. PtRu nanocubes as bifunctional electrocatalysts for ammonia electrolysis. J. Mater. Chem. A 2021, 9, 8444–8451.
Li, Y.; Li, X.; Pillai, H. S.; Lattimer, J.; Adli, N. M.; Karakalos, S.; Chen, M. J.; Guo, L.; Xu, H.; Yang, J. et al. Ternary PtIrNi catalysts for efficient electrochemical ammonia oxidation. ACS Catal. 2020, 10, 3945–3957.
Chan, Y. T.; Siddharth, K.; Shao, M. H. Investigation of cubic Pt alloys for ammonia oxidation reaction. Nano Res. 2020, 13, 1920–1927.
Li, Y.; Pillai, H. S.; Wang, T.; Hwang, S.; Zhao, Y.; Qiao, Z.; Mu, Q. M.; Karakalos, S.; Chen, M. J.; Yang, J.; et al. High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells. Energy Environ. Sci. 2021, 14, 1449–1460.
Zheng, S. Y.; Wu, J.; Wang, K.; Hu, M. C.; Wen, H.; Yin, S. B. Electronic modulation of Ni-Mo-O porous nanorods by Co doping for selective oxidation of 5-hydroxymethylfurfural coupled with hydrogen evolution. Acta Phys. Chim. Sin. 2023, 39, 2301032.
Pu, Z. H.; Liu, T. T.; Amiinu, I. S.; Cheng, R. L.; Wang, P. Y.; Zhang, C. T.; Ji, P. X.; Hu, W. H.; Liu, J.; Mu, S. C. Transition-metal phosphides: Activity origin, energy-related electrocatalysis applications, and synthetic strategies. Adv. Funct. Mater. 2020, 30, 2004009.
Qu, G. X.; Wu, T. L.; Yu, Y. N.; Wang, Z. K.; Zhou, Y.; Tang, Z. D.; Yue, Q. Rational design of phosphorus-doped cobalt sulfides electrocatalysts for hydrogen evolution. Nano Res. 2019, 12, 2960–2965.
Weng, C. C.; Ren, J. T.; Yuan, Z. Y. Transition metal phosphide-based materials for efficient electrochemical hydrogen evolution: A critical review. ChemSusChem 2020, 13, 3357–3375.
Duan, H. H.; Li, D. G.; Tang, Y.; He, Y.; Ji, S. F.; Wang, R. Y.; Lv, H. F.; Lopes, P. P.; Paulikas, A. P.; Li, H. Y. et al. High-performance Rh2P electrocatalyst for efficient water splitting. J. Am. Chem. Soc. 2017, 139, 5494–5502.
Xue, H. Y.; Meng, A. L.; Chen, C. J.; Xue, H. Y.; Li, Z. J.; Wang, C. S. Phosphorus-doped MoS2 with sulfur vacancy defects for enhanced electrochemical water splitting. Sci. China Mater. 2022, 65, 712–720.
Gao, L.; Li, X. X.; Yao, Z. Y.; Bai, H. J.; Lu, Y. F.; Ma, C.; Lu, S. F.; Peng, Z. M.; Yang, J. L.; Pan, A. L. et al. Unconventional p-d hybridization interaction in PtGa ultrathin nanowires boosts oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2019, 141, 18083–18090.
Shen, X. C.; Zhang, C. L.; Zhang, S. Y.; Dai, S.; Zhang, G. H.; Ge, M. Y.; Pan, Y. B.; Sharkey, S. M.; Graham, G. W.; Hunt, A. et al. Deconvolution of octahedral Pt3Ni nanoparticle growth pathway from in situ characterizations. Nat. Commun. 2018, 9, 4485.
Li, W. Z.; Lu, B. A.; Gan, L.; Tian, N.; Zhang, P. Y.; Yan, W.; Chen, W. X.; Chen, Y. H.; Zhou, Z. Y.; Sun, S. G. High activity and durability of carbon-supported core–shell PtPx@Pt/C catalyst for oxygen reduction reaction. Chin. J. Catal. 2021, 42, 2173–2180.
Xia, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W.; Wang, X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 3797–3801.
Liu, D. Y.; Zeng, Q.; Hu, C. Q.; Chen, D.; Liu, H.; Han, Y. S.; Xu, L.; Zhang, Q. B.; Yang, J. Light doping of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation. Nano Res. Energy 2022, 1, e9120017.
Mao, Z. J.; Ding, C.; Liu, X.; Zhang, Q.; Qin, X. X.; Li, H.; Yang, F.; Li, Q.; Zhang, X. G.; Zhang, J. L. et al. Interstitial B-doping in Pt lattice to upgrade oxygen electroreduction performance. ACS Catal. 2022, 12, 8848–8856.
Chen, T. Y.; Foo, C.; Tsang, S. C. E. Interstitial and substitutional light elements in transition metals for heterogeneous catalysis. Chem. Sci. 2021, 12, 517–532.
Wang, Y.; Li, X. P.; Zhang, M. M.; Zhou, Y. G.; Rao, D. W.; Zhong, C.; Zhang, J. F.; Han, X. P.; Hu, W. B.; Zhang, Y. C. et al. Lattice-strain engineering of homogeneous NiS0.5Se0.5 core–shell nanostructure as a highly efficient and robust electrocatalyst for overall water splitting. Adv. Mater. 2020, 32, 2000231.
Zhou, D. J.; Wang, S. Y.; Jia, Y.; Xiong, X. Y.; Yang, H. B.; Liu, S.; Tang, J. L.; Zhang, J. M.; Liu, D.; Zheng, L. R. et al. NiFe hydroxide lattice tensile strain: Enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis. Angew. Chem., Int. Ed. 2019, 58, 736–740.
Yang, X. B.; Wang, Y. Y.; Tong, X. L.; Yang, N. J. Strain engineering in electrocatalysts: Fundamentals, progress, and perspectives. Adv. Energy Mater. 2022, 12, 2102261.
Liang, J. S.; Xia, Y.; Liu, X.; Huang, F. Y.; Liu, J. J.; Li, S. Z.; Wang, T. Y.; Jiao, S. H.; Cao, R. G.; Han, J. T. et al. Molybdenum-doped ordered L10-PdZn nanosheets for enhanced oxygen reduction electrocatalysis. SusMat 2022, 2, 347–356.
Lu, B. A.; Shen, L. F.; Liu, J.; Zhang, Q. H.; Wan, L. Y.; Morris, D. J.; Wang, R. X.; Zhou, Z. Y.; Li, G.; Sheng, T. et al. Structurally disordered phosphorus-doped Pt as a highly active electrocatalyst for an oxygen reduction reaction. ACS Catal. 2021, 11, 355–363.
Zhang, Q. Q.; Xia, T. Y.; Huang, H.; Liu, J. L.; Zhu, M. Y.; Yu, H.; Xu, W. F.; Huo, Y. P.; He, C. L.; Shen, S. P. et al. Autocatalytic reduction-assisted synthesis of segmented porous PtTe nanochains for enhancing methanol oxidation reaction. Nano Res. Energy 2023, 2, e9120041.
Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.
He, K.; Tsega, T. T.; Liu, X.; Zai, J. T.; Li, X. H.; Liu, X. J.; Li, W. H.; Ali, N.; Qian, X. F. Utilizing the space-charge region of the FeNi-LDH/CoP p-n junction to promote performance in oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 11903–11909.
Katayama, Y.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Electrochemical oxidation of ammonia over rare earth oxide modified platinum catalysts. J. Phys. Chem. C 2015, 119, 9134–9141.
Liu, Y. J.; Chen, M. Q.; Yang, S. F. Chemical functionalization of 2D black phosphorus. InfoMat 2021, 3, 231–251.
Yang, X. B.; Liang, Z. P.; Chen, S.; Ma, M. J.; Wang, Q.; Tong, X. L.; Zhang, Q. H.; Ye, J. Y.; Gu, L.; Yang, N. J. A phosphorus-doped Ag@Pd catalyst for enhanced C–C bond cleavage during ethanol electrooxidation. Small 2020, 16, 2004727.
García, N.; Climent, V.; Orts, J. M.; Feliu, J. M.; Aldaz, A. Effect of pH and alkaline metal cations on the voltammetry of Pt (111) single crystal electrodes in sulfuric acid solution. ChemPhysChem 2004, 5, 1221–1227.
Marković, N. M.; Ross, P. N. Jr. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 2002, 45, 117–229.
Singh, Y.; Back, S.; Jung, Y. Activating transition metal dichalcogenides by substitutional nitrogen-doping for potential ORR electrocatalysts. ChemElectroChem 2018, 5, 4029–4035.
Yin, S. B.; Luo, L.; Xu, C.; Zhao, Y. L.; Qiang, Y. H.; Mu, S. C. Functionalizing carbon nanotubes for effective electrocatalysts supports by an intermittent microwave heating method. J. Power Sources 2012, 198, 1–6.
Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.
Chen, J. L.; Qian, G. F.; Zhang, H.; Feng, S. Q.; Mo, Y. S.; Luo, L.; Yin, S. B. PtCo@PtSn heterojunction with high stability/activity for pH-universal H2 evolution. Adv. Funct. Mater. 2022, 32, 2107597.
Sun, J. Y.; Tian, F.; Yu, F.; Yang, Z.; Yu, B.; Chen, S.; Ren, Z. F.; Zhou, H. Q. Robust hydrogen-evolving electrocatalyst from heterogeneous molybdenum disulfide-based catalyst. ACS Catal. 2020, 10, 1511–1519.
He, T. O.; Wang, W. C.; Shi, F. L.; Yang, X. L.; Li, X.; Wu, J. B.; Yin, Y. D.; Jin, M. S. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021, 598, 76–81.
Son, C. Y.; Kwak, I. H.; Lim, Y. R.; Park, J. FeP and FeP2 nanowires for efficient electrocatalytic hydrogen evolution reaction. Chem. Commun. 2016, 52, 2819–2822.
Kim, H.; Yang, W.; Lee, W. H.; Han, M. H.; Moon, J.; Jeon, C.; Kim, D.; Ji, S. G.; Chae, K. H.; Lee, K. S. et al. Operando stability of platinum electrocatalysts in ammonia oxidation reactions. ACS Catal. 2020, 10, 11674–11684.
Siddharth, K.; Hong, Y.; Qin, X. P.; Lee, H. J.; Chan, Y. T.; Zhu, S. Q.; Chen, G. H.; Choi, S. I.; Shao, M. H. Surface engineering in improving activity of Pt nanocubes for ammonia electrooxidation reaction. Appl. Catal. B: Environ. 2020, 269, 118821.