AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An artificial interphase enables stable PVDF-based solid-state Li metal batteries

Mengjun Wu1,§Jiangping Song1,§Jiaheng Lei2Haolin Tang1,3( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528200, China

§ Mengjun Wu and Jiangping Song contributed equally to this work.

Show Author Information

Graphical Abstract

A K+ added polymer interlayer by ultraviolet (UV) polymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA)-based precursor solution is coated on the Li surface to enhance the interfacial stability between polyvinylidene fluoride (PVDF)-based composite polymer electrolyte (CPE) and Li anode. The PVDF electrolytes united with this PEG-KNO3 layer enable the Li|LFP (LFP = LiFePO4) cell with high loading of 10 mg·cm−2 to cycle over 60 cycles without significant capacity loss.

Abstract

Composite polymer electrolytes (CPEs) have attracted much attention for high energy density solid-state lithium-metal batteries owing to their flexibility, low cost, and easy scale-up. However, the unstable Li/CPE interface is always challengeable for the practical utilization of CPEs. Herein, a polymer interlayer containing K+ prepared by ultraviolet (UV)-curing precursor solution is coated on Li surface to stabilize the interface between poly(vinylidene difluoride) (PVDF) composite electrolytes and Li anode. Benefiting from the physical barrier of the interlayer, the continuous decomposition of PVDF is restrained and the intimate contact between electrode and electrolyte is also achieved to reduce the interface impedance. Moreover, the added K+ is utilized to further regulate smooth Li deposition. As a consequence, the symmetric Li|Li cell with coated Li demonstrates steady cycling at 0.4 mAh·cm−2 and a high critical current density of 1 mA·cm−2. The assembled Li|LiFePO4 cell presents outstanding cycling stability (capacity retention of 90% after 400 cycles at 1 C) and good rate performance. The associated pouch cell performs impressive flexibility and safety. This work provides a convenient strategy to achieve stable Li/PVDF interface for high-performance PVDF-based solid state Li metal batteries.

Electronic Supplementary Material

Download File(s)
12274_2023_5963_MOESM1_ESM.pdf (614.7 KB)
12274_2023_5963_MOESM2_ESM.pdf (578.4 KB)

References

[1]

Varzi, A.; Raccichini, R.; Passerini, S.; Scrosati, B. Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J. Mater. Chem. A 2016, 4, 17251–17259.

[2]

Hu, Z. L.; Li, G. J.; Wang, A. X.; Luo, J. Y.; Liu, X. J. Recent progress of electrolyte design for lithium metal batteries. Batteries Supercaps 2020, 3, 331–335.

[3]

Yang, Q. F.; Hu, J. L.; Meng, J. W.; Li, C. L. C-F-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode. Energy Environ. Sci. 2021, 14, 3621–3631.

[4]

Zhu, M.; Wu, J. X.; Wang, Y.; Song, M. M.; Long, L.; Siyal, S. H.; Yang, X. P.; Sui, G. Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem. 2019, 37, 126–142.

[5]

Jie, Y. L.; Ren, X. D.; Cao, R. G.; Cai, W. B.; Jiao, S. H. Advanced liquid electrolytes for rechargeable Li metal batteries. Adv. Funct. Mater. 2020, 30, 1910777.

[6]

Wu, F.; Zhang, K.; Liu, Y. R.; Gao, H. C.; Bai, Y.; Wang, X. R.; Wu, C. Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects. Energy Storage Mater. 2020, 33, 26–54.

[7]

Ye, T. T.; Li, L. H.; Zhang, Y. Recent progress in solid electrolytes for energy storage devices. Adv. Funct. Mater. 2020, 30, 2000077.

[8]

Hu, J. L.; Chen, K. Y.; Yao, Z. G.; Li, C. L. Unlocking solid-state conversion batteries reinforced by hierarchical microsphere stacked polymer electrolyte. Sci. Bull. 2021, 66, 694–707.

[9]

Bi, Z. J.; Huang, W. L.; Mu, S.; Sun, W. H.; Zhao, N.; Guo, X. X. Dual-interface reinforced flexible solid garnet batteries enabled by in-situ solidified gel polymer electrolytes. Nano Energy 2021, 90, 106498.

[10]

Fan, L.; Wei, S. Y.; Li, S. Y.; Li, Q.; Lu, Y. Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 2018, 8, 1702657.

[11]

Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 2019, 18, 1278–1291.

[12]

Zheng, C. J.; Ruan, Y. D.; Su, J. M.; Song, Z.; Xiu, T. P.; Jin, J.; Badding, M. E.; Wen, Z. Y. Grain boundary modification in garnet electrolyte to suppress lithium dendrite growth. Chem. Eng. J. 2021, 411, 128508.

[13]

Tian, Z. C.; Kim, D. A flexible, robust, and high ion-conducting solid electrolyte membranes enabled by interpenetrated network structure for all-solid-state lithium metal battery. J. Energy Chem. 2022, 68, 603–611.

[14]

Wen, S. J.; Luo, C.; Wang, Q. R.; Wei, Z. Y.; Zeng, Y. X.; Jiang, Y. D.; Zhang, G. Z.; Xu, H. L.; Wang, J.; Wang, C. Y. et al. Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries. Energy Stor. Mater. 2022, 47, 453–461.

[15]

Wu, X. X.; Zheng, Y. J.; Li, W. B.; Liu, Y. Y.; Zhang, Y.; Li, Y. J.; Li, C. L. Solid electrolytes reinforced by infinite coordination polymer nano-network for dendrite-free lithium metal batteries. Energy Storage Mater. 2021, 41, 436–447.

[16]

An, Y.; Han, X.; Liu, Y. Y.; Azhar, A.; Na, J.; Nanjundan, A. K.; Wang, S. P.; Yu, J. X.; Yamauchi, Y. Progress in solid polymer electrolytes for lithium-ion batteries and beyond. Small 2022, 18, 2103617.

[17]

Zheng, J.; Tang, M. X.; Hu, Y. Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem., Int. Ed. 2016, 55, 12538–12542.

[18]

Li, L. S.; Deng, Y. F.; Chen, G. H. Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries. J. Energy Chem. 2020, 50, 154–177.

[19]

Fan, P.; Liu, H.; Marosz, V.; Samuels, N. T.; Suib, S. L.; Sun, L. Y.; Liao, L. B. High performance composite polymer electrolytes for lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2101380.

[20]

Lei, M.; Wu, X. X.; Liu, Y. Y.; Chen, K. Y.; Hu, J. L.; Li, C. L. Polymer electrolytes reinforced by 2D fluorinated filler for all-solid-state Li-Fe-F conversion-type lithium metal batteries. Nano Res. 2023, 16, 8469–8477.

[21]

Hu, J. L.; Lai, C. Z.; Chen, K. Y.; Wu, Q. P.; Gu, Y. P.; Wu, C. L.; Li, C. L. Dual fluorination of polymer electrolyte and conversion-type cathode for high-capacity all-solid-state lithium metal batteries. Nat. Commun. 2022, 13, 7914.

[22]

Chen, F.; Jing, M. X.; Yang, H.; Yuan, W. Y.; Liu, M. Q.; Ji, Y. S.; Hussain, S.; Shen, X. Q. Improved ionic conductivity and Li dendrite suppression of PVDF-based solid electrolyte membrane by LLZO incorporation and mechanical reinforcement. Ionics 2021, 27, 1101–1111.

[23]

Chen, J. H.; Zhang, H.; Chen, H. Z.; Xia, E. J.; Wu, Y. M.; Li, Z. C. PVDF-based electrolyte decorated by Li29Zr9Nb3O40 Li-ion conductor and electrochemical performance of related solid-state batteries. J. Power Sources 2022, 548, 232109.

[24]

Deng, T.; Cao, L. S.; He, X. Z.; Li, A. M.; Li, D.; Xu, J. J.; Liu, S. F.; Bai, P. X.; Jin, T.; Ma, L. et al. In situ formation of polymer-inorganic solid–electrolyte interphase for stable polymeric solid-state lithium-metal batteries. Chem 2021, 7, 3052–3068.

[25]

Pareek, T.; Dwivedi, S.; Ahmad, S. A.; Badole, M.; Kumar, S. Effect of NASICON-type LiSnZr(PO4)3 ceramic filler on the ionic conductivity and electrochemical behavior of PVDF based composite electrolyte. J. Alloys Compd. 2020, 824, 153991.

[26]

Peng, L.; Lu, Z. Y.; Zhong, L.; Jian, J. J.; Rong, Y.; Yang, R. Z.; Xu, Y. D.; Jin, C. Enhanced ionic conductivity and interface compatibility of PVDF-LLZTO composite solid electrolytes by interfacial maleic acid modification. J. Colloid Interface Sci. 2022, 613, 368–375.

[27]

Lai, C.; Shu, C. Y.; Li, W.; Wang, L.; Wang, X. W.; Zhang, T. R.; Yin, X. S.; Ahmad, I.; Li, M. T.; Tian, X. L. et al. Stabilizing a lithium metal battery by an in situ Li2S-modified interfacial layer via amorphous-sulfide composite solid electrolyte. Nano Lett. 2020, 20, 8273–8281.

[28]

Bag, S.; Zhou, C. T.; Kim, P. J.; Pol, V. G.; Thangadurai, V. LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li-S batteries. Energy Storage Mater. 2020, 24, 198–207.

[29]

Xue, C. J.; Zhang, X.; Wang, S.; Li, L. L.; Nan, C. W. Organic-organic composite electrolyte enables ultralong cycle life in solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 2020, 12, 24837–24844.

[30]

Wang, D. D.; Liu, H. D.; Li, M. Q.; Xia, D. W.; Holoubek, J.; Deng, Z.; Yu, M. Y.; Tian, J. H.; Shan, Z. Q.; Ong, S. P. et al. A long-lasting dual-function electrolyte additive for stable lithium metal batteries. Nano Energy 2020, 75, 104889.

[31]

Kokal, I.; Somer, M.; Notten, P. H. L.; Hintzen, H. T. Sol-gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure. Solid State Ionics 2011, 185, 42–46.

[32]

Qin, A. W.; Wu, X. L.; Ma, B. M.; Zhao, X. Z.; He, C. J. Enhancing the antifouling property of poly(vinylidene fluoride)/SiO2 hybrid membrane through TIPS method. J. Mater. Sci. 2014, 49, 7797–7808.

[33]

Dong, Y. F.; Wu, J. H.; Hu, J.; Yan, S. K.; Müller, A. J.; Sun, X. L. Thermal-field-tuned heterogeneous amorphous states of poly(vinylidene fluoride) films with precise transition from nonpolar to polar phase. Macromolecules 2022, 55, 9671–9679.

[34]

Hwang, J. W.; Noh, S. M.; Kim, B.; Jung, H. W. Gelation and crosslinking characteristics of photopolymerized poly(ethylene glycol) hydrogels. J. Appl. Polym. Sci. 2015, 132, 41939.

[35]

Wang, X. Q.; Jin, S. Y.; Cui, Y. D.; Zhang, J.; Lu, H. J.; Ren, Y. J.; Du, G. X.; Ji, J. H.; Li, J. H.; Xiong, C. H. Photocatalytic activity of Co3O4@C enhanced by induction of amorphous cobalt-based MOF. Colloids Surf. A: Physicochem. Eng. Aspects 2023, 657, 130597.

[36]

Zhao, X. T.; Lan, Y. Y.; Yang, K.; Wang, R. X.; Cheng, L. J.; Gao, C. J. Antifouling modification of PVDF membranes via in situ mixed-charge copolymerization and TiO2 mineralization. Appl. Surf. Sci. 2020, 525, 146564.

[37]

Bao, R. Y.; Cao, J.; Liu, Z. Y.; Yang, W.; Xie, B. H.; Yang, M. B. Towards balanced strength and toughness improvement of isotactic polypropylene nanocomposites by surface functionalized graphene oxide. J. Mater. Chem. A 2014, 2, 3190–3199.

[38]

Wang, X. Q.; Zhang, J.; Wang, R.; Ren, Y. J.; Jin, S. Y.; Wang, S. M.; Lu, H. J.; Wang, Y. J.; Zhao, J. Z.; Xiong, C. H. Stable all-solid-state Z-scheme heterojunction Bi2O3-Co3O4@C microsphere photocatalysts for recalcitrant pollutant degradation. J. Alloys Compd. 2023, 940, 168915.

[39]

Gao, R. M.; Yang, H.; Wang, C. Y.; Ye, H.; Cao, F. F.; Guo, Z. P. Fatigue-resistant interfacial layer for safe lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 25508–25513.

[40]

Dedryvère, R.; Leroy, S.; Martinez, H.; Blanchard, F.; Lemordant, D.; Gonbeau, D. XPS valence characterization of lithium salts as a tool to study electrode/electrolyte interfaces of Li-ion batteries. J. Phys. Chem. B 2006, 110, 12986–12992.

[41]

Jote, B. A.; Shitaw, K. N.; Weret, M. A.; Yang, S. C.; Huang, C. J.; Wang, C. H.; Weng, Y. T.; Wu, S. H.; Su, W. N.; Hwang, B. J. Lithium nitrate as a surplus lithium source for anode-free cell with Ni-rich (NMC811) cathode. J. Power Sources 2022, 532, 231303.

[42]

Chen, W. Y.; Salvatierra, R. V.; Li, J. T.; Luong, D. X.; Beckham, J. L.; Li, V. D.; La, N.; Xu, J. N.; Tour, J. M. Brushed metals for rechargeable metal batteries. Adv. Mater. 2022, 34, 2202668.

[43]

Perry, C. C.; Wagner, A. J.; Howard Fairbrother, D. Electron stimulated C–F bond breaking kinetics in fluorine-containing organic thin films. Chem. Phys. 2002, 280, 111–118.

[44]

Cho, E.; Kim, S. H.; Kim, M.; Park, J. S.; Lee, S. J. Super-hydrophobic and antimicrobial properties of Ag-PPFC nanocomposite thin films fabricated using a ternary carbon nanotube-Ag-PTFE composite sputtering target. Surf. Coat. Technol. 2019, 370, 18–23.

[45]

Zhou, H.; Wang, H. J.; Liu, Z. X.; Yang, H. B.; Yuan, C. L.; Wang, Y. X. Facilitated phase transformation of PVDF in its composite with an ionic liquid. Polymer 2021, 220, 123564.

Nano Research
Pages 1482-1490
Cite this article:
Wu M, Song J, Lei J, et al. An artificial interphase enables stable PVDF-based solid-state Li metal batteries. Nano Research, 2024, 17(3): 1482-1490. https://doi.org/10.1007/s12274-023-5963-9
Topics:

698

Views

3

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 10 May 2023
Revised: 22 June 2023
Accepted: 26 June 2023
Published: 27 July 2023
© Tsinghua University Press 2023
Return