AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Oral pyroptosis nanoinhibitor for the treatment of inflammatory bowel disease

Zhenxing Zhu1Dongtao Zhou2Yi Yin3Zhun Li1Zhen Guo1Yongchun Pan2Yanfeng Gao2Jingjing Yang4Weiming Zhu1( )Yujun Song2( )Yi Li1( )
Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China
College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
Show Author Information

Graphical Abstract

As an orally administrated therapy strategy, DXMS@CuM@PPADT@PSS (DCMP) responds to reactive oxygen species (ROS) to release drugs and active sites in the lesions of inflammatory bowel disease. DCMP can inhibit NLRP3/GSDMD (nucleotide-binding domain and leucine-rich repeat family pyrin domain containing 3/gasdermin D) pathway-related pyroptosis of intestinal epithelial cells and then alleviate the colitis.

Abstract

Inflammatory bowel disease (IBD) is an autoimmune gastrointestinal disease characterized by chronic relapsing inflammation of the intestine. Excessive pyroptosis that exists in the inflamed intestine can activate damage signals and aggravate local inflammation in IBD. Here, we designed an oral pyroptosis nanoinhibitor, DXMS@CuM@PPADT@PSS (DCMP), which can target intestinal lesions, and respond to reactive oxygen species (ROS) to release active sites and drugs at the lesion. DCMP can inhibit the activation of the nucleotide-binding domain and leucine-rich repeat family pyrin domain containing 3 (NLRP3) inflammasomes by scavenging ROS, resulting in the down-regulation of gasdermin D (GSDMD) cleavage thus inhibiting pyroptosis. It also improved intestinal barrier function, decreased inflammatory cytokine levels, and increased the diversity of gut microbiota in mice with colitis. This work is believed to expand the biomedical application of nanomaterials for innate immunity modulation.

Electronic Supplementary Material

Download File(s)
12274_2023_5969_MOESM1_ESM.pdf (3.4 MB)

References

[1]

Raine, T.; Verstockt, B.; Kopylov, U.; Karmiris, K.; Goldberg, R.; Atreya, R.; Burisch, J.; Burke, J.; Ellul, P.; Hedin, C. et al. ECCO topical review: Refractory inflammatory bowel disease. J. Crohn’s Colitis 2021, 15, 1605–1620.

[2]

Molodecky, N. A.; Soon, I. S.; Rabi, D. M.; Ghali, W. A.; Ferris, M.; Chernoff, G.; Benchimol, E. I.; Panaccione, R.; Ghosh, S.; Barkema, H. W. et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012, 142, 46–54.e42.

[3]

Ng, S. C.; Shi, H. Y.; Hamidi, N.; Underwood, F. E.; Tang, W.; Benchimol, E. I.; Panaccione, R.; Ghosh, S.; Wu, J. C. Y.; Chan, F. K. L. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2017, 390, 2769–2778.

[4]

Ye, Y. Z.; Manne, S.; Treem, W. R.; Bennett, D. Prevalence of inflammatory bowel disease in pediatric and adult populations: Recent estimates from large national databases in the United States, 2007-2016. Inflammat. Bowel Dis. 2020, 26, 619–625.

[5]

Park, K. T.; Ehrlich, O. G.; Allen, J. I.; Meadows, P.; Szigethy, E. M.; Henrichsen, K.; Kim, S. C.; Lawton, R. C.; Murphy, S. M.; Regueiro, M. et al. The cost of inflammatory bowel disease: An initiative from the Crohn's & Colitis Foundation. Inflammatory Bowel Dis. 2020, 26, 1–10.

[6]

Torres, J.; Mehandru, S.; Colombel, J. F.; Peyrin-Biroulet, L. Crohn's disease. Lancet 2017, 389, 1741–1755.

[7]

De Souza, H. S. P.; Fiocchi, C.; Iliopoulos, D. The IBD interactome: An integrated view of aetiology, pathogenesis and therapy. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 739–749.

[8]

Fiorino, G.; Lytras, T.; Younge, L.; Fidalgo, C.; Coenen, S.; Chaparro, M.; Allocca, M.; Arnott, I.; Bossuyt, P.; Burisch, J. et al. Quality of care standards in inflammatory bowel diseases: A European Crohn's and Colitis Organisation position paper. J. Crohn’s Colitis 2020, 14, 1037–1048.

[9]

Rubin, D. T.; Ananthakrishnan, A. N.; Siegel, C. A.; Sauer, B. G.; Long, M. D. ACG clinical guideline: Ulcerative colitis in adults. Am. J. Gastroenterol. 2019, 114, 384–413.

[10]

Tsai, L.; Ma, C.; Dulai, P. S.; Prokop, L. J.; Eisenstein, S.; Ramamoorthy, S. L.; Feagan, B. G.; Jairath, V.; Sandborn, W. J.; Singh, S. Contemporary risk of surgery in patients with ulcerative colitis and crohn's disease: A meta-analysis of population-based cohorts. Clin. Gastroenterol. Hepatol. 2021, 19, 2031–2045.e11.

[11]

Yu, P.; Zhang, X.; Liu, N.; Tang, L.; Peng, C.; Chen, X. Pyroptosis: Mechanisms and diseases. Signal Transduct. Target. Ther. 2021, 6, 128.

[12]

Huang, X. Y.; Feng, Z. Q.; Jiang, Y. Z.; Li, J. L.; Xiang, Q.; Guo, S.; Yang, C. Y.; Fei, L.; Guo, G. N.; Zheng, L. X. et al. VSIG4 mediates transcriptional inhibition of Nlrp3 and Il-1 β in macrophages. Sci. Adv. 2019, 5, eaau7426.

[13]

Chen, X. L.; Liu, G. L.; Yuan, Y. Y.; Wu, G. T.; Wang, S. L.; Yuan, L. W. NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling. Cell Death Dis. 2019, 10, 906.

[14]

Kovacs, S. B.; Miao, E. A. Gasdermins: Effectors of Pyroptosis. Trends Cell Biol. 2017, 27, 673–684.

[15]

Shi, J. J.; Zhao, Y.; Wang, K.; Shi, X. Y.; Wang, Y.; Huang, H. W.; Zhuang, Y. H.; Cai, T.; Wang, F. C.; Shao, F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015, 526, 660–665.

[16]

Wang, L.; Dong, X. B.; Feng, S. Y.; Pan, H. R.; Jang, X.; Chen, L. F.; Zhao, Y.; Chen, W. Z.; Huang, Z. M. VX765 alleviates dextran sulfate sodium-induced colitis in mice by suppressing caspase-1-mediated pyroptosis. Int. Immunopharmacol. 2022, 102, 108405.

[17]

Deng, Z.; Ni, J. J.; Wu, X. Y.; Wei, H. K.; Peng, J. GPA peptide inhibits NLRP3 inflammasome activation to ameliorate colitis through AMPK pathway. Aging (Albany NY) 2020, 12, 18522–18544.

[18]

Alzoghaibi, M. A. Concepts of oxidative stress and antioxidant defense in Crohn's disease. World J. Gastroenterol. 2013, 19, 6540–6547.

[19]

Piechota-Polanczyk, A.; Fichna, J. Review article: The role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn-Schmiedeberg's Arch. Pharmacol. 2014, 387, 605–620.

[20]

Simmonds, N. J.; Allen, R. E.; Stevens, T. R. J.; Niall, R.; Van Someren, M.; Blake, D. R.; Rampton, D. S. Chemiluminescence assay of mucosal reactive oxygen metabolites in inflammatory bowel disease. Gastroenterology 1992, 103, 186–196.

[21]

Dang, P. M. C.; Rolas, L.; El-Benna, J. The dual role of reactive oxygen species-generating nicotinamide adenine dinucleotide phosphate oxidases in gastrointestinal inflammation and therapeutic perspectives. Antioxid. Redox Signal. 2020, 33, 354–373.

[22]

Tian, T.; Wang, Z. L.; Zhang, J. H. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid. Med. Cell. Longev. 2017, 2017, 4535194.

[23]

Chen, L.; You, Q.; Hu, L.; Gao, J.; Meng, Q. Q.; Liu, W. T.; Wu, X. F.; Xu, Q. The antioxidant procyanidin reduces reactive oxygen species signaling in macrophages and ameliorates experimental colitis in mice. Front. Immunol. 2018, 8, 1910.

[24]

Wang, S.; Yuan, Y. H.; Chen, N. H.; Wang, H. B. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson's disease. Int. Immunopharmacol. 2019, 67, 458–464.

[25]

Zhou, R. B.; Yazdi, A. S.; Menu, P.; Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011, 469, 221–225.

[26]

Wu, X. F.; Ouyang, Z. J.; Feng, L. L.; Chen, G.; Guo, W. J.; Shen, Y.; Wu, X. D.; Sun, Y.; Xu, Q. Suppression of NF-κB signaling and NLRP3 inflammasome activation in macrophages is responsible for the amelioration of experimental murine colitis by the natural compound fraxinellone. Toxicol. Appl. Pharmacol. 2014, 281, 146–156.

[27]

Liu, T. F.; Xiao, B. W.; Xiang, F.; Tan, J. L.; Chen, Z.; Zhang, X. R.; Wu, C. Z.; Mao, Z. W.; Luo, G. X.; Chen, X. Y. et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 2020, 11, 2788.

[28]

Pearce, S. C.; Al-Jawadi, A.; Kishida, K.; Yu, S. Y.; Hu, M.; Fritzky, L. F.; Edelblum, K. L.; Gao, N.; Ferraris, R. P. Marked differences in tight junction composition and macromolecular permeability among different intestinal cell types. BMC Biol. 2018, 16, 19.

[29]

Lin, I. C.; Liang, M. T.; Liu, T. Y.; Monteiro, M. J.; Toth, I. Cellular transport pathways of polymer coated gold nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 8–11.

[30]

Wilson, D. S.; Dalmasso, G.; Wang, L. X.; Sitaraman, S. V.; Merlin, D.; Murthy, N. Orally delivered thioketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines. Nat. Mater. 2010, 9, 923–928.

[31]

Zhang, S. F.; Langer, R.; Traverso, G. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today 2017, 16, 82–96.

[32]

Fang, Y.; Gu, D.; Zou, Y.; Wu, Z. X.; Li, F. Y.; Che, R. C.; Deng, Y. H.; Tu, B.; Zhao, D. Y. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem., Int. Ed. 2010, 49, 7987–7991.

[33]

Xiong, J.; Wang, Y.; Xue, Q. J.; Wu, X. D. Synthesis of highly stable dispersions of nanosized copper particles using l-ascorbic acid. Green Chem. 2011, 13, 900–904.

[34]

Xue, K. W.; Mo, Y.; Long, B. J.; Wei, W.; Shan, C. S.; Guo, S. J.; Niu, L. Single-atom catalysts supported on ordered porous materials: Synthetic strategies and applications. InfoMat 2022, 4, e12296.

[35]

Peterson, C. G.; Eklund, E.; Taha, Y.; Raab, Y.; Carlson, M. A new method for the quantification of neutrophil and eosinophil cationic proteins in feces: Establishment of normal levels and clinical application in patients with inflammatory bowel disease. Am. J. Gastroenterol. 2002, 97, 1755–1762.

[36]

Tirosh, B.; Khatib, N.; Barenholz, Y.; Nissan, A.; Rubinstein, A. Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa. Mol. Pharmaceutics 2009, 6, 1083–1091.

[37]

De Gracia Lux, C.; Joshi-Barr, S.; Nguyen, T.; Mahmoud, E.; Schopf, E.; Fomina, N.; Almutairi, A. Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide. J. Am. Chem. Soc. 2012, 134, 15758–15764.

[38]

Hu, L. Z.; Yuan, Y. L.; Zhang, L.; Zhao, J. M.; Majeed, S.; Xu, G. B. Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal. Chim. Acta 2013, 762, 83–86.

[39]

Sheng, J. L.; Chen, J. H.; Kang, J. H.; Yu, Y.; Yan, N.; Fu, X. Z.; Sun, R.; Wong, C. P. Octahedral Cu2O@Co(OH)2 nanocages with hierarchical flake-like walls and yolk-shell structures for enhanced electrocatalytic activity. ChemCatChem 2019, 11, 2520–2525.

[40]

Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S. E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 2014, 94, 329–354.

[41]

Li, S. T.; Dai, Q.; Zhang, S. X.; Liu, Y. J.; Yu, Q. Q.; Tan, F.; Lu, S. H.; Wang, Q.; Chen, J. W.; Huang, H. Q. et al. Ulinastatin attenuates LPS-induced inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NF-κB signaling pathway and activating the PI3K/Akt/Nrf2 pathway. Acta Pharmacol. Sin. 2018, 39, 1294–1304.

[42]

Chi, F. X.; Zhang, G. Q.; Ren, N. S.; Zhang, J.; Du, F.; Zheng, X. Y.; Zhang, C.; Lin, Z. Q.; Li, R. X.; Shi, X. J. et al. The anti-alcoholism drug disulfiram effectively ameliorates ulcerative colitis through suppressing oxidative stresses-associated pyroptotic cell death and cellular inflammation in colonic cells. Int. Immunopharmacol. 2022, 111, 109117.

[43]

Li, K.; Friedman, J. R.; Chan, D.; Pollack, P.; Yang, F. F.; Jacobstein, D.; Brodmerkel, C.; Gasink, C.; Feagan, B. G.; Sandborn, W. J. et al. Effects of Ustekinumab on histologic disease activity in patients with Crohn's Disease. Gastroenterology 2019, 157, 1019–1031.e7.

[44]

Liu, Z. W.; Ren, Z. P.; Zhang, J.; Chuang, C. C.; Kandaswamy, E.; Zhou, T. Y.; Zuo, L. Role of ROS and nutritional antioxidants in human diseases. Front. Physiol. 2018, 9, 477.

[45]

Zhou, C. B.; Fang, J. Y. The role of pyroptosis in gastrointestinal cancer and immune responses to intestinal microbial infection. Biochim. Biophys. Acta Rev. Cancer 2019, 1872, 1–10.

[46]

Jia, Y. F.; Cui, R. X.; Wang, C.; Feng, Y.; Li, Z. Y.; Tong, Y. M.; Qu, K.; Liu, C.; Zhang, J. Y. Metformin protects against intestinal ischemia-reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD pathway. Redox Biol. 2020, 32, 101534.

[47]

Günzel, D.; Yu, A. S. L. Claudins and the modulation of tight junction permeability. Physiol. Rev. 2013, 93, 525–569.

[48]

Chelakkot, C.; Ghim, J.; Ryu, S. H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 2018, 50, 1–9.

[49]

Kuo, W. T.; Zuo, L.; Odenwald, M. A.; Madha, S.; Singh, G.; Gurniak, C. B.; Abraham, C.; Turner, J. R. The tight junction protein ZO-1 is dispensable for barrier function but critical for effective mucosal repair. Gastroenterology 2021, 161, 1924–1939.

[50]

Ni, J.; Wu, G. D.; Albenberg, L.; Tomov, V. T. Gut microbiota and IBD: Causation or correlation. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 573–584.

[51]

He, X. X.; Li, Y. H.; Yan, P. G.; Meng, X. C.; Chen, C. Y.; Li, K. M.; Li, J. N. Relationship between clinical features and intestinal microbiota in Chinese patients with ulcerative colitis. World J. Gastroenterol. 2021, 27, 4722–4737.

[52]

Arpaia, N.; Campbell, C.; Fan, X. Y.; Dikiy, S.; Van Der Veeken, J.; DeRoos, P.; Liu, H.; Cross, J. R.; Pfeffer, K.; Coffer, P. J. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504, 451–455.

[53]

Cuscó, A.; Pérez, D.; Viñes, J.; Fàbregas, N.; Francino, O. Long-read metagenomics retrieves complete single-contig bacterial genomes from canine feces. BMC Genomics 2021, 22, 330.

[54]

Sinha, S. R.; Haileselassie, Y.; Nguyen, L. P.; Tropini, C.; Wang, M.; Becker, L. S.; Sim, D.; Jarr, K.; Spear, E. T.; Singh, G. et al. Dysbiosis-Induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe 2020, 27, 659–670.e5.

Nano Research
Pages 1748-1759
Cite this article:
Zhu Z, Zhou D, Yin Y, et al. Oral pyroptosis nanoinhibitor for the treatment of inflammatory bowel disease. Nano Research, 2024, 17(3): 1748-1759. https://doi.org/10.1007/s12274-023-5969-3
Topics:

1073

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 30 March 2023
Revised: 28 June 2023
Accepted: 30 June 2023
Published: 31 July 2023
© Tsinghua University Press 2023
Return