AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Ferromagnetism in sp2 carbon

Wenxiang Wang1,2,§Julienne Impundu1,2,§Jiyou Jin1,2Zhisheng Peng1,2Hui Liu1,2Zheng Wei1,2Yushi Xu1Yu Wang1Jiawang You1Weimin Fan1,2Yong Jun Li1,2,3( )Lianfeng Sun1,2,3( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Nanofabrication laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China

§ Wenxiang Wang and Julienne Impundu contributed equally to this work.

Show Author Information

Graphical Abstract

The induction of ferromagnetism in carbon nanotubes and graphene has been proved by many experimental techniques. The demonstration of spin-related devices, such as room-temperature spin field effect transistors and spin memory using carbon nanotubes, lays the basis for the development of integrated circuit of spintronics, which is fundamentally different from charge-based conventional electronics.

Abstract

The bulk, pristine sp2 carbons, such as graphite, carbon nanotubes, and graphene, are usually assumed to be typical diamagnetic materials. However, over the past two decades, there have been many reports about the ferromagnetism in these sp2 carbon materials, which have attracted intense interest for basic research and potential applications. In this review, we focus on the evidence and developments of the emergent ferromagnetism in sp2 carbon revealed by nine kinds of experimental methods: magnetic force microscopy (MFM), magnetization measurements with physical property measurement system (PPMS), X-ray magnetic circular dichroism (XMCD), scanning tunneling microscopy (STM), miniaturized magnetic particle inspection (MPI), anomalous Hall effect (AHE), mechanical deflection of carbon nanotube cantilevers, magnetoresistance, and spin-related devices (spin field effect transistor and spin memory). The advantages, conclusions, challenges, and future of these methods are discussed. The ferromagnetism in sp2 carbon will open a door to explore exotic physical phenomena and lay the basis for the development of integrated circuit of spintronics, which is fundamentally different from charge-based conventional electronics.

References

[1]

McClure, J. W. Diamagnetism of graphite. Phys. Rev. 1956, 104, 666–671.

[2]

Kopelevich, Y.; Esquinazi, P.; Torres, J. H. S.; Moehlecke, S. Ferromagnetic- and superconducting-like behavior of graphite. J. Low Temp. Phys. 2000, 119, 691–702.

[3]

Esquinazi, P.; Setzer, A.; Höhne, R.; Semmelhack, C.; Kopelevich, Y.; Spemann, D.; Butz, T.; Kohlstrunk, B.; Lösche, M. Ferromagnetism in oriented graphite samples. Phys. Rev. B 2002, 66, 024429.

[4]

Mombrú, A. W.; Pardo, H.; Faccio, R.; De Lima, O. F.; Leite, E. R.; Zanelatto, G.; Lanfredi, A. J. C.; Cardoso, C. A.; Araújo-Moreira, F. M. Multilevel ferromagnetic behavior of room-temperature bulk magnetic graphite. Phys. Rev. B 2005, 71, 100404.

[5]

Wang, Y.; Huang, Y.; Song, Y.; Zhang, X. Y.; Ma, Y. F.; Liang, J. J.; Chen, Y. S. Room-temperature ferromagnetism of graphene. Nano Lett. 2009, 9, 220–224.

[6]

Yazyev, O. V.; Helm, L. Defect-induced magnetism in graphene. Phys. Rev. B 2007, 75, 125408.

[7]

Hong, J.; Bekyarova, E.; Liang, P.; De Heer, W. A.; Haddon, R. C.; Khizroev, S. Room-temperature magnetic ordering in functionalized graphene. Sci. Rep. 2012, 2, 624.

[8]

Giesbers, A. J. M.; Uhlířová, K.; Konečný, M.; Peters, E. C.; Burghard, M.; Aarts, J.; Flipse, C. F. J. Interface-induced room-temperature ferromagnetism in hydrogenated epitaxial graphene. Phys. Rev. Lett. 2013, 111, 166101.

[9]

Hampel, S.; Leonhardt, A.; Selbmann, D.; Biedermann, K.; Elefant, D.; Müller, C.; Gemming, T.; Büchner, B. Growth and characterization of filled carbon nanotubes with ferromagnetic properties. Carbon 2006, 44, 2316–2322.

[10]

Tang, N. J.; Wen, J. F.; Zhang, Y.; Liu, F. X.; Lin, K.; Du, Y. W. Helical carbon nanotubes: Catalytic particle size-dependent growth and magnetic properties. ACS Nano 2010, 4, 241–250.

[11]

Allemand, P. M.; Khemani, K. C.; Koch, A.; Wudl, F.; Holczer, K.; Donovan, S.; Grüner, G.; Thompson, J. D. Organic molecular soft ferromagnetism in a fullerene C60. Science 1991, 253, 301–302.

[12]

Coey, J. M. D.; Venkatesan, M.; Fitzgerald, C. B.; Douvalis, A. P.; Sanders, I. S. Ferromagnetism of a graphite nodule from the Canyon Diablo meteorite. Nature 2002, 420, 156–159.

[13]

Rode, A. V.; Gamaly, E. G.; Christy, A. G.; Fitz Gerald, J. G.; Hyde, S. T.; Elliman, R. G.; Luther-Davies, B.; Veinger, A. I.; Androulakis, J.; Giapintzakis, J. Unconventional magnetism in all-carbon nanofoam. Phys. Rev. B 2004, 70, 054407.

[14]

Zheng, Y. P.; Chen, Y. H.; Lin, L. H.; Sun, Y. Y.; Liu, H. B.; Li, Y. L.; Du, Y. W.; Tang, N. J. Intrinsic magnetism of graphdiyne. Appl. Phys. Lett. 2017, 111, 033101.

[15]

Lin, L. H.; Pan, H. Z.; Chen, Y. H.; Song, X. Y.; Xu, J.; Liu, H. B.; Tang, S. L.; Du, Y. W.; Tang, N. J. Identifying the stacking style, intrinsic bandgap and magnetism of pristine graphdyine. Carbon 2019, 143, 8–13.

[16]

Zhang, M. J.; Sun, H. J.; Wang, X. X.; Du, H. P.; He, J. J.; Long, Y. Z.; Zhang, Y. L.; Huang, C. S. Room-temperature ferromagnetism in sulfur-doped graphdiyne semiconductors. J. Phys. Chem. C 2019, 123, 5010–5016.

[17]

Li, R.; Sun, H. J.; Zhang, C.; Zhang, M. J.; Li, X. D.; Yang, Z.; Ma, X. D.; Huang, C. S. Graphdiyne doped with transition metal as ferromagnetic semiconductor. Carbon 2022, 188, 25–33.

[18]

Talapatra, S.; Ganesan, P. G.; Kim, T.; Vajtai, R.; Huang, M.; Shima, M.; Ramanath, G.; Srivastava, D.; Deevi, S. C.; Ajayan, P. M. Irradiation-induced magnetism in carbon nanostructures. Phys. Rev. Lett. 2005, 95, 097201.

[19]

Joly, V. L. J.; Kiguchi, M.; Hao, S. J.; Takai, K.; Enoki, T.; Sumii, R.; Amemiya, K.; Muramatsu, H.; Hayashi, T.; Kim, Y. A. et al. Observation of magnetic edge state in graphene nanoribbons. Phys. Rev. B 2010, 81, 245428.

[20]

Yazyev, O. V.; Katsnelson, M. I. Magnetic correlations at graphene edges: Basis for novel spintronics devices. Phys. Rev. Lett. 2008, 100, 047209.

[21]

Son, Y. W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.

[22]

Ising, E. Beitrag zur theorie des ferromagnetismus. Z. Phys. 1925, 31, 253–258.

[23]

Mermin, N. D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966, 17, 1133–1136.

[24]

Makarova, T. L.; Sundqvist, B.; Höhne, R.; Esquinazi, P.; Kopelevich, Y.; Scharff, P.; Davydov, V. A.; Kashevarova, L. S.; Rakhmanina, A. V. Magnetic carbon. Nature 2001, 413, 716–718.

[25]

Han, K. H.; Spemann, D.; Esquinazi, P.; Höhne, R.; Riede, V.; Butz, T. Ferromagnetic spots in graphite produced by proton irradiation. Adv. Mater. 2003, 15, 1719–1722.

[26]

Ohldag, H.; Tyliszczak, T.; Höhne, R.; Spemann, D.; Esquinazi, P.; Ungureanu, M.; Butz, T. π-electron ferromagnetism in metal-free carbon probed by soft X-ray dichroism. Phys. Rev. Lett. 2007, 98, 187204.

[27]

Červenka, J.; Katsnelson, M. I.; Flipse, C. F. J. Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nat. Phys. 2009, 5, 840–844.

[28]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[29]

Sofo, J. O.; Chaudhari, A. S.; Barber, G. D. Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 2007, 75, 153401.

[30]

Yazyev, O. V. Emergence of magnetism in graphene materials and nanostructures. Rep. Prog. Phys. 2010, 73, 056501.

[31]

Zhou, J.; Wang, Q.; Sun, Q.; Chen, X. S.; Kawazoe, Y.; Jena, P. Ferromagnetism in semihydrogenated graphene sheet. Nano Lett. 2009, 9, 3867–3870.

[32]

González-Herrero, H.; Gómez-Rodríguez, J. M.; Mallet, P.; Moaied, M.; Palacios, J. J.; Salgado, C.; Ugeda, M. M.; Veuillen, J. Y.; Yndurain, F.; Brihuega, I. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 2016, 352, 437–441.

[33]

Del Carmen Gimenez-López, M.; Moro, F.; La Torre, A.; Gómez-García, C. J.; Brown, P. D.; Van Slageren, J.; Khlobystov, A. N. Encapsulation of single-molecule magnets in carbon nanotubes. Nat. Commun. 2011, 2, 407.

[34]

Esquinazi, P.; Spemann, D.; Höhne, R.; Setzer, A.; Han, K. H.; Butz, T. Induced magnetic ordering by proton irradiation in graphite. Phys. Rev. Lett. 2003, 91, 227201.

[35]

Zhang, J.; Deng, Y.; Hao, T. T.; Hu, X.; Liu, Y. Y.; Peng, Z. S.; Nshimiyimana, J. P.; Chi, X. N.; Wu, P.; Liu, S. Y. et al. Large magnetic moment at sheared ends of single-walled carbon nanotubes. Chin. Phys. B 2018, 27, 128101.

[36]

Zhou, H. Q.; Yang, H. C.; Qiu, C. Y.; Liu, Z.; Yu, F.; Chen, M. J.; Hu, L. J.; Xia, X. X.; Yang, H. F.; Gu, C. Z. et al. Experimental evidence of local magnetic moments at edges of n-layer graphenes and graphite. J. Phys. Chem. C 2011, 115, 15785–15792.

[37]

Zhou, H. Q.; Yang, H. C.; Qiu, C. Y.; Liu, Z.; Yu, F.; Hu, L. J.; Xia, X. X.; Yang, H. F.; Gu, C. Z.; Sun, L. F. Aggregation of ferromagnetic and paramagnetic atoms at edges of graphenes and graphite. Chin. Phys. B 2011, 20, 026803.

[38]

Chen, M. J.; Zhou, H. Q.; Qiu, C. Y.; Yang, H. C.; Yu, F.; Sun, L. F. Studies on the properties of surface and edges of N-layer graphenes. Sci. China Phys. Mech. Astron. 2011, 54, 1729–1738.

[39]

Wang, Z. Y.; Tang, C.; Sachs, R.; Barlas, Y.; Shi, J. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect. Phys. Rev. Lett. 2015, 114, 016603.

[40]

Ghiasi, T. S.; Kaverzin, A. A.; Dismukes, A. H.; De Wal, D. K.; Roy, X.; Van Wees, B. J. Electrical and thermal generation of spin currents by magnetic bilayer graphene. Nat. Nanotechnol. 2021, 16, 788–794.

[41]

Wang, G.; Chen, M. J.; Yu, F.; Xue, L. J.; Deng, Y.; Zhang, J.; Qi, X. Y.; Gao, Y.; Chu, W. G.; Liu, G. T. et al. Giant magnetic moment at open ends of multiwalled carbon nanotubes. Chin. Phys. B 2015, 24, 016202.

[42]

Nshimiyimana, J. P.; Zhang, J.; Chi, X. N.; Hu, X.; Wu, P.; Liu, S. Y.; Liu, J.; Chu, W. G.; Sun, L. F. Large positive magnetoresistance in semiconducting single-walled carbon nanotubes at room temperature. RSC Adv. 2018, 8, 10179–10184.

[43]

Liu, J.; Peng, Z. S.; Cai, J. Z.; Yue, J. Y.; Wei, H. N.; Impundu, J.; Liu, H.; Jin, J. Y.; Yang, Z.; Chu, W. G. et al. A room-temperature four-terminal spin field effect transistor. Nano Today 2021, 38, 101138.

[44]

Peng, Z. S.; Deng, Y.; Wei, H. N.; Peng, K.; Liu, H.; Jin, J. Y.; Wang, Z. P.; Chu, W. G.; Zhang, J.; Li, Y. J. et al. Room-temperature nonvolatile molecular memory based on partially unzipped nanotube. Adv. Funct. Mater. 2022, 32, 2107224.

[45]

Martin, Y.; Wickramasinghe, H. K. Magnetic imaging by ‘‘force microscopy’’ with 1000 Å resolution. Appl. Phys. Lett. 1987, 50, 1455–1457.

[46]

Sáenz, J. J.; García, N.; Grütter, P.; Meyer, E.; Heinzelmann, H.; Wiesendanger, R.; Rosenthaler, L.; Hidber, H. R.; Güntherodt, H. J. Observation of magnetic forces by the atomic force microscope. J. Appl. Phys. 1987, 62, 4293–4295.

[47]

Zhang, Y.; Li, S. Y.; Huang, H. Q.; Li, W. T.; Qiao, J. B.; Wang, W. X.; Yin, L. J.; Bai, K. K.; Duan, W. H.; He, L. Scanning tunneling microscopy of the π magnetism of a single carbon vacancy in graphene. Phys. Rev. Lett. 2016, 117, 166801.

[48]

Nagaosa, N.; Sinova, J.; Onoda, S.; MacDonald, A. H.; Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 2010, 82, 1539–1592.

[49]

Tang, B. J.; Wang, X. W.; Han, M. J.; Xu, X. D.; Zhang, Z. W.; Zhu, C.; Cao, X.; Yang, Y. M.; Fu, Q. D.; Yang, J. Q. et al. Phase engineering of Cr5Te8 with colossal anomalous Hall effect. Nat. Electron. 2022, 5, 224–232.

[50]

Yu, R.; Zhang, W.; Zhang, H. J.; Zhang, S. C.; Dai, X.; Fang, Z. Quantized anomalous Hall effect in magnetic topological insulators. Science 2010, 329, 61–64.

[51]

Chang, C. Z.; Zhang, J. S.; Feng, X.; Shen, J.; Zhang, Z. C.; Guo, M. H.; Li, K.; Ou, Y. B.; Wei, P.; Wang, L. L. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 2013, 340, 167–170.

[52]

Zhou, J. D.; Zhang, W. J.; Lin, Y. C.; Cao, J.; Zhou, Y.; Jiang, W.; Du, H. F.; Tang, B. J.; Shi, J.; Jiang, B. Y. et al. Heterodimensional superlattice with in-plane anomalous Hall effect. Nature 2022, 609, 46–51.

[53]

Coleman, R. V.; Isin, A. Magnetoresistance in iron single crystals. J. Appl. Phys. 1966, 37, 1028–1029.

[54]

Li, Y. Y.; Cao, Y. F.; Wei, G. N.; Li, Y. Y.; Ji, Y.; Wang, K. Y.; Edmonds, K. W.; Campion, R. P.; Rushforth, A. W.; Foxon, C. T. et al. Anisotropic current-controlled magnetization reversal in the ferromagnetic semiconductor (Ga, Mn)As. Appl. Phys. Lett. 2013, 103, 022401.

[55]

Zhang, J. Y.; Dou, P. W.; Peng, W. L.; Zhuang, Y.; Liu, J. L.; Kohn, A.; Amsellem, E.; You, C. Y.; Liu, J. Q.; Zheng, X. Q. et al. Multi-resistance state tuned by interfacial active Pt layer in a perpendicular Hall balance. Appl. Surf. Sci. 2020, 521, 146475.

[56]

Yang, S. Y.; Liu, Z.; Hu, S.; Jin, A. Z.; Yang, H. F.; Zhang, S.; Li, J. J.; Gu, C. Z. Spin-selective transmission in chiral folded metasurfaces. Nano Lett. 2019, 19, 3432–3439.

[57]

Johnson, M. Bipolar spin switch. Science 1993, 260, 320–323.

[58]

Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; Van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571–574.

[59]

Avsar, A.; Ochoa, H.; Guinea, F.; Özyilmaz, B.; Van Wees, B. J.; Vera-Marun, I. J. Colloquium:Spintronics in graphene and other two-dimensional materials. Rev. Mod. Phys. 2020, 92, 021003.

[60]

Liu, Y. P.; Zeng, C.; Zhong, J. H.; Ding, J. N.; Wang, Z. M.; Liu, Z. W. Spintronics in two-dimensional materials. Nano-Micro Lett. 2020, 12, 93.

[61]

Chen, L.; Yang, X.; Yang, F. H.; Zhao, J. H.; Misuraca, J.; Xiong, P.; Von Molnár, S. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. Nano Lett. 2011, 11, 2584–2589.

[62]

Chen, L.; Yan, S.; Xu, P. F.; Lu, J.; Wang, W. Z.; Deng, J. J.; Qian, X.; Ji, Y.; Zhao, J. H. Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga, Mn)As films with high ferromagnetic transition temperature. Appl. Phys. Lett. 2009, 95, 182505.

[63]

Thiel, L.; Wang, Z.; Tschudin, M. A.; Rohner, D.; Gutiérrez-Lezama, I.; Ubrig, N.; Gibertini, M.; Giannini, E.; Morpurgo, A. F.; Maletinsky, P. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 2019, 364, 973–976.

[64]

Song, T. C.; Sun, Q. C.; Anderson, E.; Wang, C.; Qian, J. M.; Taniguchi, T.; Watanabe, K.; McGuire, M. A.; Stöhr, R.; Xiao, D. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 2021, 374, 1140–1144.

[65]

Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

[66]

Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

[67]

Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

[68]

Magda, G. Z.; Jin, X. Z.; Hagymási, I.; Vancsó, P.; Osváth, Z.; Nemes-Incze, P.; Hwang, C.; Biró, L. P.; Tapasztó, L. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 2014, 514, 608–611.

[69]

Song, H. D.; Zhu, P. F.; Fang, J. Z.; Zhou, Z. Q.; Yang, H.; Wang, K. Y.; Li, J. B.; Yu, D. P.; Wei, Z. M.; Liao, Z. M. Anomalous Hall effect in graphene coupled to a layered magnetic semiconductor. Phys. Rev. B 2021, 103, 125304.

[70]

Boukhvalov, D. W.; Katsnelson, M. I.; Lichtenstein, A. I. Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B 2008, 77, 035427.

[71]

Hong, X.; Zou, K.; Wang, B.; Cheng, S. H.; Zhu, J. Evidence for spin-flip scattering and local moments in dilute fluorinated graphene. Phys. Rev. Lett. 2012, 108, 226602.

[72]

Nair, R. R.; Sepioni, M.; Tsai, I. L.; Lehtinen, O.; Keinonen, J.; Krasheninnikov, A. V.; Thomson, T.; Geim, A. K.; Grigorieva, I. V. Spin-half paramagnetism in graphene induced by point defects. Nat. Phys. 2012, 8, 199–202.

[73]

Santos, E. J. G.; Sánchez-Portal, D.; Ayuela, A. Magnetism of substitutional Co impurities in graphene: Realization of single π vacancies. Phys. Rev. B 2010, 81, 125433.

[74]

Zhang, H. B.; Lazo, C.; Blügel, S.; Heinze, S.; Mokrousov, Y. Electrically tunable quantum anomalous Hall effect in graphene decorated by 5d transition-metal adatoms. Phys. Rev. Lett. 2012, 108, 056802.

[75]

Wei, P.; Lee, S.; Lemaitre, F.; Pinel, L.; Cutaia, D.; Cha, W.; Katmis, F.; Zhu, Y.; Heiman, D.; Hone, J. et al. Strong interfacial exchange field in the graphene/EuS heterostructure. Nat. Mater. 2016, 15, 711–716.

[76]

Nair, R. R.; Tsai, I. L.; Sepioni, M.; Lehtinen, O.; Keinonen, J.; Krasheninnikov, A. V.; Castro Neto, A. H.; Katsnelson, M. I.; Geim, A. K.; Grigorieva, I. V. Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat. Commun. 2013, 4, 2010.

[77]

Han, W.; Kawakami, R. K.; Gmitra, M.; Fabian, J. Graphene spintronics. Nat. Nanotechnol. 2014, 9, 794–807.

[78]

Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 1989, 62, 1201–1204.

[79]

Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K. et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610–613.

[80]

Varchon, F.; Mallet, P.; Magaud, L.; Veuillen, J. Y. Rotational disorder in few-layer graphene films on 6H-SiC (000-1): A scanning tunneling microscopy study. Phys. Rev. B 2008, 77, 165415.

[81]

Sprinkle, M.; Siegel, D.; Hu, Y.; Hicks, J.; Tejeda, A.; Taleb-Ibrahimi, A.; Le Fèvre, P.; Bertran, F.; Vizzini, S.; Enriquez, H. et al. First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 2009, 103, 226803.

[82]

Kelly, K. F.; Mickelson, E. T.; Hauge, R. H.; Margrave, J. L.; Halas, N. J. Nanoscale imaging of chemical interactions: Fluorine on graphite. Proc. Natl. Acad. Sci. USA 2000, 97, 10318–10321.

[83]

Lehtinen, P. O.; Foster, A. S.; Ma, Y. C.; Krasheninnikov, A. V.; Nieminen, R. M. Irradiation-induced magnetism in graphite: A density functional study. Phys. Rev. Lett. 2004, 93, 187202.

[84]

Faccio, R.; Pardo, H.; Denis, P. A.; Oeiras, R. Y.; Araújo-Moreira, F. M.; Veríssimo-Alves, M.; Mombrú, A. W. Magnetism induced by single carbon vacancies in a three-dimensional graphitic network. Phys. Rev. B 2008, 77, 035416.

[85]

Levy, N.; Burke, S. A.; Meaker, K. L.; Panlasigui, M.; Zettl, A.; Guinea, F.; Castro Neto, A. H.; Crommie, M. F. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 2010, 329, 544–547.

[86]

Jiang, Y. H.; Mao, J. H.; Duan, J. X.; Lai, X. Y.; Watanabe, K.; Taniguchi, T.; Andrei, E. Y. Visualizing strain-induced pseudomagnetic fields in graphene through an hBN magnifying glass. Nano Lett. 2017, 17, 2839–2843.

[87]

Zhu, S. Z.; Stroscio, J. A.; Li, T. Programmable extreme pseudomagnetic fields in graphene by a uniaxial stretch. Phys. Rev. Lett. 2015, 115, 245501.

[88]

Zhang, Y.; Gao, F.; Gao, S. W.; He, L. Tunable magnetism of a single-carbon vacancy in graphene. Sci. Bull. 2020, 65, 194–200.

[89]

Babar, R.; Kabir, M. Ferromagnetism in nitrogen-doped graphene. Phys. Rev. B 2019, 99, 115442.

[90]

Hsu, C. C.; Teague, M. L.; Wang, J. Q.; Yeh, N. C. Nanoscale strain engineering of giant pseudo-magnetic fields, valley polarization, and topological channels in graphene. Sci. Adv. 2020, 6, eaat9488.

[91]

Li, S. Y.; Su, Y.; Ren, Y. N.; He, L. Valley polarization and inversion in strained graphene via pseudo-Landau levels, valley splitting of real Landau levels, and confined states. Phys. Rev. Lett. 2020, 124, 106802.

[92]

Lu, J.; Neto, A. H. C.; Loh, K. P. Transforming moiré blisters into geometric graphene nano-bubbles. Nat. Commun. 2012, 3, 823.

[93]

Jia, P. F.; Chen, W. J.; Qiao, J. B.; Zhang, M.; Zheng, X. H.; Xue, Z. Y.; Liang, R. D.; Tian, C. S.; He, L.; Di, Z. F. et al. Programmable graphene nanobubbles with three-fold symmetric pseudo-magnetic fields. Nat. Commun. 2019, 10, 3127.

[94]

Dai, Z. H.; Hou, Y.; Sanchez, D. A.; Wang, G. R.; Brennan, C. J.; Zhang, Z.; Liu, L. Q.; Lu, N. S. Interface-governed deformation of nanobubbles and nanotents formed by two-dimensional materials. Phys. Rev. Lett. 2018, 121, 266101.

[95]

Ma, L. B.; Hu, Y.; Zhu, G. Y.; Chen, R. P.; Chen, T.; Lu, H. L.; Wang, Y. R.; Liang, J.; Liu, H. X.; Yan, C. Z. et al. In situ thermal synthesis of inlaid ultrathin MoS2/graphene nanosheets as electrocatalysts for the hydrogen evolution reaction. Chem. Mater. 2016, 28, 5733–5742.

[96]

Kang, D. H.; Sun, H.; Luo, M. L.; Lu, K. Z.; Chen, M.; Kim, Y.; Jung, Y.; Gao, X. J.; Parluhutan, S. J.; Ge, J. Y. et al. Pseudo-magnetic field-induced slow carrier dynamics in periodically strained graphene. Nat. Commun. 2021, 12, 5087.

[97]

Song, G. B.; Ranjbar, M.; Daughton, D. R.; Kiehl, R. A. Nanoparticle-induced anomalous Hall effect in graphene. Nano Lett. 2019, 19, 7112–7118.

[98]

Gao, M.; Han, X. W.; Liu, W. J.; Tian, Z. A.; Mei, Y. F.; Zhang, M.; Chu, P. K.; Kan, E. J.; Hu, T.; Du, Y. P. et al. Graphene-mediated ferromagnetic coupling in the nickel nano-islands/graphene hybrid. Sci. Adv. 2021, 7, eabg7054.

[99]

Hu, W.; Wang, C.; Tan, H.; Duan, H. L.; Li, G. N.; Li, N.; Ji, Q. Q.; Lu, Y.; Wang, Y.; Sun, Z. H. et al. Embedding atomic cobalt into graphene lattices to activate room-temperature ferromagnetism. Nat. Commun. 2021, 12, 1854.

[100]

McIver, J. W.; Schulte, B.; Stein, F. U.; Matsuyama, T.; Jotzu, G.; Meier, G.; Cavalleri, A. Light-induced anomalous Hall effect in graphene. Nat. Phys. 2020, 16, 38–41.

[101]

Sharpe, A. L.; Fox, E. J.; Barnard, A. W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M. A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608.

[102]

Kim, K.; Yankowitz, M.; Fallahazad, B.; Kang, S.; Movva, H. C. P.; Huang, S. Q.; Larentis, S.; Corbet, C. M.; Taniguchi, T.; Watanabe, K. et al. Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 2016, 16, 1989–1995.

[103]

Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A. et al. One-dimensional electrical contact to a two-dimensional material. Science 2013, 342, 614–617.

[104]

Hou, Y.; Ren, X. B.; Fan, J. C.; Wang, G. R.; Dai, Z. H.; Jin, C. H.; Wang, W. X.; Zhu, Y. B.; Zhang, S.; Liu, L. Q. et al. Preparation of twisted bilayer graphene via the wetting transfer method. ACS Appl. Mater. Interfaces 2020, 12, 40958–40967.

[105]

Wang, W. X.; Ma, X. J.; Dai, Z. H.; Zhang, S.; Hou, Y.; Wang, G. R.; Li, Q. Y.; Zhang, Z.; Wei, Y. G.; Liu, L. Q. Mechanical behavior of blisters spontaneously formed by multilayer 2D materials. Adv. Mater. Interfaces 2022, 9, 2101939.

[106]

Luican, A.; Li, G. H.; Reina, A.; Kong, J.; Nair, R. R.; Novoselov, K. S.; Geim, A. K.; Andrei, E. Y. Single-layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett. 2011, 106, 126802.

[107]

Bistritzer, R.; MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA 2011, 108, 12233–12237.

[108]

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

[109]

Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

[110]

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

[111]

Li, G. H.; Luican, A.; Lopes dos Santos, J. M. B.; Castro Neto, A. H.; Reina, A.; Kong, J.; Andrei, E. Y. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 2009, 6, 109–113.

[112]

Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

[113]

Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

[114]

Liu, J. P.; Dai, X. Orbital magnetic states in moiré graphene systems. Nat. Rev. Phys. 2021, 3, 367–382.

[115]

Li, S. Y.; Zhang, Y.; Ren, Y. N.; Liu, J. P.; Dai, X.; He, L. Experimental evidence for orbital magnetic moments generated by moiré-scale current loops in twisted bilayer graphene. Phys. Rev. B 2020, 102, 121406.

[116]

Feng, C.; Xiang, J. X.; Liu, P.; Wang, X. Q.; Wang, J. L.; Hu, G. J.; Huang, M.; Wang, Z.; Zhang, Z. M.; Liu, Y. et al. Magnetic logic inverter from crossed structures of defect-free graphene with large unsaturated room temperature negative magnetoresistance. Nano Res. 2019, 12, 2485–2489.

[117]

Chen, J. J.; Wu, H. C.; Yu, D. P.; Liao, Z. M. Magnetic moments in graphene with vacancies. Nanoscale 2014, 6, 8814–8821.

[118]

Shi, H. H.; Zhan, Z.; Qi, Z. K.; Huang, K. X.; Veen, E. V.; Silva-Guillén, J. Á.; Zhang, R. X.; Li, P. J.; Xie, K.; Ji, H. X. et al. Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. Nat. Commun. 2020, 11, 371.

[119]

Zhang, S.; Xu, Q.; Hou, Y.; Song, A. S.; Ma, Y.; Gao, L.; Zhu, M. Z.; Ma, T. B.; Liu, L. Q.; Feng, X. Q. et al. Domino-like stacking order switching in twisted monolayer-multilayer graphene. Nat. Mater. 2022, 21, 621–626.

[120]

Pixley, J. H.; Andrei, E. Y. Ferromagnetism in magic-angle graphene. Science 2019, 365, 543–543.

[121]

Lin, J. X.; Zhang, Y. H.; Morissette, E.; Wang, Z.; Liu, S.; Rhodes, D.; Watanabe, K.; Taniguchi, T.; Hone, J.; Li, J. I. A. Spin-orbit-driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science 2022, 375, 437–441.

[122]

Serlin, M.; Tschirhart, C. L.; Polshyn, H.; Zhang, Y.; Zhu, J.; Watanabe, K.; Taniguchi, T.; Balents, L.; Young, A. F. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 2020, 367, 900–903.

[123]

Esquinazi, P.; Barzola-Quiquia, J.; Spemann, D.; Rothermel, M.; Ohldag, H.; García, N.; Setzer, A.; Butz, T. Magnetic order in graphite: Experimental evidence, intrinsic and extrinsic difficulties. J. Magn. Magn. Mater. 2010, 322, 1156–1161.

[124]

Korneva, G.; Ye, H. H.; Gogotsi, Y.; Halverson, D.; Friedman, G.; Bradley, J. C.; Kornev, K. G. Carbon nanotubes loaded with magnetic particles. Nano Lett. 2005, 5, 879–884.

[125]

Krainov, I. V.; Klier, J.; Dmitriev, A. P.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W.; Gornyi, I. V. Giant magnetoresistance in carbon nanotubes with single-molecule magnets TbPc2. ACS Nano 2017, 11, 6868–6880.

[126]

Guo, J. B.; Jiang, H.; Teng, Y.; Xiong, Y.; Chen, Z. H.; You, L. J.; Xiao, D. L. Recent advances in magnetic carbon nanotubes: Synthesis, challenges and highlighted applications. J. Mater. Chem. B 2021, 9, 9076–9099.

[127]

Yang, Z. F.; Li, L. Y.; Hsieh, C. T.; Juang, R. S. Co-precipitation of magnetic Fe3O4 nanoparticles onto carbon nanotubes for removal of copper ions from aqueous solution. J. Taiwan Inst. Chem. Eng. 2018, 82, 56–63.

[128]

Liu, Y.; Shen, Y. T.; Sun, L. T.; Li, J. C.; Liu, C.; Ren, W. C.; Li, F.; Gao, L. B.; Chen, J.; Liu, F. C. et al. Elemental superdoping of graphene and carbon nanotubes. Nat. Commun. 2016, 7, 10921.

[129]

Suenaga, K.; Wakabayashi, H.; Koshino, M.; Sato, Y.; Urita, K.; Iijima, S. Imaging active topological defects in carbon nanotubes. Nat. Nanotechnol. 2007, 2, 358–360.

[130]

Xiang, R.; Luo, G.; Qian, W.; Zhang, Q.; Wang, Y.; Wei, F.; Li, Q.; Cao, A. Encapsulation, compensation, and substitution of catalyst particles during continuous growth of carbon nanotubes. Adv. Mater. 2007, 19, 2360–2363.

[131]

Urdampilleta, M.; Klyatskaya, S.; Cleuziou, J. P.; Ruben, M.; Wernsdorfer, W. Supramolecular spin valves. Nat. Mater. 2011, 10, 502–506.

[132]

Yan, D. C.; Chen, S. Y.; Wu, M. K.; Chi, C. C.; Chao, J. H.; Green, M. L. H. Ferromagnetism of double-walled carbon nanotubes. Appl. Phys. Lett. 2010, 96, 242503.

[133]

Caiulo, N.; Yu, C. H.; Yu, K. M. K.; Lo, C. C. H.; Oduro, W.; Thiebaut, B.; Bishop, P.; Tsang, S. C. Carbon-decorated FePt nanoparticles. Adv. Funct. Mater. 2007, 17, 1392–1396.

[134]

Kim, I. T.; Nunnery, G. A.; Jacob, K.; Schwartz, J.; Liu, X. T.; Tannenbaum, R. Synthesis, characterization, and alignment of magnetic carbon nanotubes tethered with maghemite nanoparticles. J. Phys. Chem. C 2010, 114, 6944–6951.

[135]

Jia, B. P.; Gao, L.; Sun, J. Self-assembly of magnetite beads along multiwalled carbon nanotubes via a simple hydrothermal process. Carbon 2007, 45, 1476–1481.

[136]

Friedman, A. L.; Chun, H.; Jung, Y. J.; Heiman, D.; Glaser, E. R.; Menon, L. Possible room-temperature ferromagnetism in hydrogenated carbon nanotubes. Phys. Rev. B 2010, 81, 115461.

[137]

Bonnet, R.; Martin, P.; Suffit, S.; Lafarge, P.; Lherbier, A.; Charlier, J. C.; Della Rocca, M. L.; Barraud, C. Giant spin signals in chemically functionalized multiwall carbon nanotubes. Sci. Adv. 2020, 6, eaba5494.

[138]

Deng, J.; Wang, C.; Guan, G. Z.; Wu, H.; Sun, H.; Qiu, L. B.; Chen, P. N.; Pan, Z. Y.; Sun, H.; Zhang, B. et al. The deformations of carbon nanotubes under cutting. ACS Nano 2017, 11, 8464–8470.

[139]

Baibich, M. N.; Broto, J. M.; Fert, A.; Nguyen Van Dau, F.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472–2475.

[140]

Dankert, A.; Dash, S. P. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun. 2017, 8, 16093.

[141]

Sahoo, S.; Kontos, T.; Furer, J.; Hoffmann, C.; Gräber, M.; Cottet, A.; Schönenberger, C. Electric field control of spin transport. Nat. Phys. 2005, 1, 99–102.

[142]

Hueso, L. E.; Pruneda, J. M.; Ferrari, V.; Burnell, G.; Valdés-Herrera, J. P.; Simons, B. D.; Littlewood, P. B.; Artacho, E.; Fert, A.; Mathur, N. D. Transformation of spin information into large electrical signals using carbon nanotubes. Nature 2007, 445, 410–413.

[143]

Li, D.; Chen, M. Y.; Sun, Z. Z.; Yu, P.; Liu, Z.; Ajayan, P. M.; Zhang, Z. X. Two-dimensional non-volatile programmable p–n junctions. Nat. Nanotechnol. 2017, 12, 901–906.

[144]

Guo, F. S.; Day, B. M.; Chen, Y. C.; Tong, M. L.; Mansikkamäki, A.; Layfield, R. A. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403.

[145]

Bhatnagar, A.; Jain, A. K. A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. J. Colloid Interface Sci. 2005, 281, 49–55.

[146]

Peng, Y.; Zhang, F. M.; Zheng, X.; Wang, H. Y.; Xu, C. H.; Xiao, Q.; Zhong, Y. J.; Zhu, W. D. Comparison study on the adsorption of CFC-115 and HFC-125 on activated carbon and silicalite-1. Ind. Eng. Chem. Res. 2010, 49, 10009–10015.

[147]

Chouyyok, W.; Wiacek, R. J.; Pattamakomsan, K.; Sangvanich, T.; Grudzien, R. M.; Fryxell, G. E.; Yantasee, W. Phosphate removal by anion binding on functionalized nanoporous sorbents. Environ. Sci. Technol. 2010, 44, 3073–3078.

[148]

Peter, S. A.; Moharir, A. S.; Jasra, R. V. Selective adsorption of oxygen over argon in alkaline-earth-metal cation-exchanged zeolite X. Ind. Eng. Chem. Res. 2010, 49, 7524–7529.

[149]

Ngomsik, A. F.; Bee, A.; Draye, M.; Cote, G.; Cabuil, V. Magnetic nano- and microparticles for metal removal and environmental applications: A review. C. R. Chim. 2005, 8, 963–970.

[150]

Zhang, Y. X.; Xu, S. C.; Luo, Y. Y.; Pan, S. S.; Ding, H. L.; Li, G. H. Synthesis of mesoporous carbon capsules encapsulated with magnetite nanoparticles and their application in wastewater treatment. J. Mater. Chem. 2011, 21, 3664–3671.

[151]

Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I. C.; Kim, K. S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 2010, 4, 3979–3986.

[152]

Ambashta, R. D.; Sillanpää, M. Water purification using magnetic assistance: A review. J. Hazard. Mater. 2010, 180, 38–49.

[153]

Welch, C. M.; Compton, R. G. The use of nanoparticles in electroanalysis: A review. Anal. Bioanal. Chem. 2006, 384, 601–619.

[154]

Bian, C. L.; Zeng, Q. X.; Xiong, H. Y.; Zhang, X. H.; Wang, S. F. Electrochemistry of norepinephrine on carbon-coated nickel magnetic nanoparticles modified electrode and analytical applications. Bioelectrochemistry 2010, 79, 1–5.

[155]

Li, J. J.; Yuan, R.; Chai, Y. Q.; Che, X. Fabrication of a novel glucose biosensor based on Pt nanoparticles-decorated iron oxide-multiwall carbon nanotubes magnetic composite. J. Mol. Catal. B:Enzym. 2010, 66, 8–14.

[156]

Qu, S.; Wang, J.; Kong, J. L.; Yang, P. Y.; Chen, G. Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing. Talanta 2007, 71, 1096–1102.

[157]

Shiju, N. R.; Guliants, V. V. Recent developments in catalysis using nanostructured materials. Appl. Catal., A Gen. 2009, 356, 1–17.

[158]

Wang, Y. Q.; Gu, B.; Xu, W. L. Electro-catalytic degradation of phenol on several metal-oxide anodes. J. Hazard. Mater. 2009, 162, 1159–1164.

[159]

Liu, C. J.; Burghaus, U.; Besenbacher, F.; Wang, Z. L. Preparation and characterization of nanomaterials for sustainable energy production. ACS Nano 2010, 4, 5517–5526.

[160]

Lim, C. W.; Lee, I. S. Magnetically recyclable nanocatalyst systems for the organic reactions. Nano Today 2010, 5, 412–434.

[161]

Zhang, L.; Wang, W. Z.; Shang, M.; Sun, S. M.; Xu, J. H. Bi2WO6@carbon/Fe3O4 microspheres: Preparation, growth mechanism and application in water treatment. J. Hazard. Mater. 2009, 172, 1193–1197.

[162]

Sun, X.; He, J. P.; Li, G. X.; Tang, J.; Wang, T.; Guo, Y. X.; Xue, H. R. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 2013, 1, 765–777.

[163]

Zhu, Z. T.; Sun, X.; Li, G. X.; Xue, H. R.; Guo, H.; Fan, X. L.; Pan, X. C.; He, J. P. Microwave-assisted synthesis of graphene-Ni composites with enhanced microwave absorption properties in Ku-band. J. Magn. Magn. Mater. 2015, 377, 95–103.

[164]

Quan, L.; Qin, F. X.; Estevez, D.; Wang, H.; Peng, H. X. Magnetic graphene for microwave absorbing application: Towards the lightest graphene-based absorber. Carbon 2017, 125, 630–639.

[165]

Zhang, M.; Wang, W. T.; Wu, F.; Yuan, P.; Chi, C.; Zhou, N. L. Magnetic and fluorescent carbon nanotubes for dual modal imaging and photothermal and chemo-therapy of cancer cells in living mice. Carbon 2017, 123, 70–83.

[166]

Liu, X. J.; Marangon, I.; Melinte, G.; Wilhelm, C.; Ménard-Moyon, C.; Pichon, B. P.; Ersen, O.; Aubertin, K.; Baaziz, W.; Pham-Huu, C. et al. Design of covalently functionalized carbon nanotubes filled with metal oxide nanoparticles for imaging, therapy, and magnetic manipulation. ACS Nano 2014, 8, 11290–11304.

[167]

Ali, Q.; Ahmed, W.; Lal, S.; Sen, T. Novel multifunctional carbon nanotube containing silver and iron oxide nanoparticles for antimicrobial applications in water treatment. Mater. Today Proc. 2017, 4, 57–64.

Nano Research
Pages 12883-12900
Cite this article:
Wang W, Impundu J, Jin J, et al. Ferromagnetism in sp2 carbon. Nano Research, 2023, 16(12): 12883-12900. https://doi.org/10.1007/s12274-023-5972-8
Topics:
Part of a topical collection:

1480

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 25 April 2023
Revised: 17 June 2023
Accepted: 30 June 2023
Published: 11 August 2023
© Tsinghua University Press 2023
Return