AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Adaptable "bubble particles" prepared by green aqueous phase reshaping for completely removing odor

Jiajia Ma1,2Yichang Xia1,2Tienan Zhao1,2Wenfeng Hu2,3Weifeng Zhang4Qinfei Ke5( )Yi Zhao1,2( )
Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
School of Fashion Engineering Central Laboratory, Shanghai University of Engineering Science, Shanghai 201620, China
Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
Show Author Information

Graphical Abstract

The adaptable “bubble particles” prepared by aqueous phase reshaping method achieve compact and eco-friendly interfacial bonding using only moisture molecules, and completely eliminate unpleasant odor through targeted killing of the source bacteria.

Abstract

Facile and ecofriendly loading of micro/nano function-specific substances to create functional materials is a trend being pursued by researchers. However, current micro/nano particles loading approaches are often hindered by issues such as uneven distribution, unsatisfactory stability and complicate procedure. In this work, we present an aqueous phase reshaping method that only utilizes the moisture to fabricate the "bubble particles", which could perfectly cater to the topography of the substrate. The green preparation of bubble particles adopts an absolutely zero-pollution method, realizing the firm loading of particles on the substrate. Integrating the preparation and loading of particles overcomes the traditional complicate process, while the aqueous phase reshaping ensures uniform and firm loading of the "bubble particles" onto the substrate. Our mechanism demonstrates a significant enhancement in the interface relation after aqueous phase reshaping, with a 121-fold increase in contact surface area achieved by reducing the height by 1 μm. Furthermore, we explore for the first time the influence of the nature of the receiving substrate on the interface morphology of particles during electrostatic spraying, which has important guiding significance for the interface relationship of electrostatic spraying and even electrostatic spinning materials. We also screen out the natural antibacterial essential oil linalool as the effective specialized antibacterial agent, which can specifically inhibit the odor-producing Proteus in urine, with an antibacterial rate of up to 100%. Taken together, this simple, ecofriendly method for fabricating functional materials with optimal interface stability appears highly promising for use in various products formed by electrostatic spraying/spinning.

Electronic Supplementary Material

Video
12274_2023_5973_MOESM2_ESM.mp4
Download File(s)
12274_2023_5973_MOESM1_ESM.pdf (725.6 KB)

References

[1]

Lee, T. Y.; Lee, S.; Kim, Y. H.; Kim, D. J.; Amstad, E.; Lee, C. S.; Kim, S. H. Microfluidic fabrication of capsule sensor platform with double-shell structure. Adv. Funct. Mater. 2019, 29, 1902670.

[2]

Tian, G. L.; Zhan, L.; Deng, J. X.; Liu, H. G.; Li, J.; Ma, J. J.; Jin, X. Y.; Ke, Q. F.; Huang, C. Coating of multi-wall carbon nanotubes (MWCNTs) on three-dimensional, bicomponent nonwovens as wearable and high-performance piezoresistive sensors. Chem. Eng. J. 2021, 425, 130682.

[3]

Kim, J. H.; Kim, J. K.; Liu, J. P.; Curcio, A.; Jang, J. S.; Kim, I. D.; Ciucci, F.; Jung, W. Nanoparticle ex-solution for supported catalysts: Materials design, mechanism and future perspectives. ACS Nano 2021, 15, 81–110.

[4]

Al-Saeghi, S. S.; Hossain, M. A.; Al-Touby, S. S. J. Characterization of antioxidant and antibacterial compounds from aerial parts of haplophyllum tuberculatum. J. Bioresour. Bioprod. 2022, 7, 52–62.

[5]

El-Sherbiny, G. M.; Gazelly, A. M.; Sharaf, M. H.; Moghannemm, S. A.; E, S. M.; Ismail, M. K. A.; El-Hawary, A. S. Exploitation of the antibacterial, antibiofilm and antioxidant activities of Salvadora Persica (Miswak) extract. J. Bioresour. Bioprod. 2023, 8, 59–65.

[6]

Zhou, Y. H.; Chen, Z. X.; Zhao, D.; Li, D.; He, C. L.; Chen, X. S. A pH-triggered self-unpacking capsule containing zwitterionic hydrogel-coated MOF nanoparticles for efficient oral exendin-4 delivery. Adv. Mater. 2021, 33, e2102044.

[7]

Ma, J. J.; Xu, W. W.; Kou, X. R.; Niu, Y. W.; Xia, Y. C.; Wang, Y. X.; Tian, G. L.; Zhao, Y.; Ke, Q. F. Green fabrication of control-released, washable, and nonadhesives aromatic-nanocapsules/cotton fabrics via electrostatic-adsorption/in situ immobilization. ACS Sustainable Chem. Eng. 2020, 8, 15258–15267.

[8]

Zhang, Y. Y.; Liu, S. J.; Yan, J. H.; Zhang, X. H.; Xia, S. H.; Zhao, Y.; Yu, J. Y.; Ding, B. Superior flexibility in oxide ceramic crystal nanofibers. Adv. Mater. 2021, 33, e2105011.

[9]

Zheng, N.; Liu, J.; Wang, G. Q.; Yao, P.; Dang, L. H.; Liu, Z.; Lu, J. F.; Li, W. G. Robust UV/moisture dual curable PDMS-microcapsule-silica functional material for self-healing, antifouling, and antibacterial applications. Nano Res. 2023, 16, 7810–7819.

[10]

Ma, J. J.; Fan, J. X.; Xia, Y. C.; Kou, X. R.; Ke, Q. F.; Zhao, Y. Preparation of aromatic β-cyclodextrin nano/microcapsules and corresponding aromatic textiles: A review. Carbohydr. Polym. 2023, 308, 120661.

[11]

Niu, Y. W.; Wu, J. H.; Kang, Y. X.; Zhao, Q. X.; Xiao, Z. B.; Zhao, D. Encapsulation technique and application progress of mechanical stimuli-responsive microcapsules. Prog. Org. Coat. 2023, 176, 107390.

[12]
Russell, S.; Bruns, N. Encapsulation of fragrances in micro- and nano-capsules, polymeric micelles, and polymersomes. Macromol. Rapid Commun., in press, DOI: 10.1002/marc.202300120.
[13]

de Cássia Siqueira Curto Valle, R.; Valle, J. A. B.; Bezerra, F. M.; Correia, J.; da Costa, C.; Martí, M.; Coderch, L.; López, A.; Arias, M. J. L. Application of lavender-oil microcapsules to functionalized PET fibers. Polymers 2023, 15, 917.

[14]

Kameya, Y.; Hayashi, T.; Motosuke, M. Stability of platinum nanoparticles supported on surface-treated carbon black. Appl. Catal. B:Environ. 2016, 189, 219–225.

[15]

Motornov, M.; Roiter, Y.; Tokarev, I.; Minko, S. Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog. Polym. Sci. 2010, 35, 174–211.

[16]

Nakatsuka, N.; Hasani-Sadrabadi, M. M.; Cheung, K. M.; Young, T. D.; Bahlakeh, G.; Moshaverinia, A.; Weiss, P. S.; Andrews, A. M. Polyserotonin nanoparticles as multifunctional materials for biomedical applications. ACS Nano 2018, 12, 4761–4774.

[17]

Fan, X. Y.; Xie, L. S.; Liang, J.; Ren, Y. C.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. L.; Li, N.; Tang, B. et al. In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Res. 2022, 15, 3050–3055.

[18]

Jin, T. H.; Peydayesh, M.; Li, M. Q.; Yao, Y.; Wu, D.; Mezzenga, R. Functional coating from amyloid superwetting films. Adv. Mater. 2022, 34, e2205072.

[19]

Wang, F.; Li, J. Y.; Pi, J.; Song, F.; Luo, Y. Q.; Wang, X. L.; Wang, Y. Z. Superamphiphobic and flame-retardant coatings with highly chemical and mechanical robustness. Chem. Eng. J. 2021, 421, 127793.

[20]

Rodrigues, S. N.; Martins, I. M.; Fernandes, I. P.; Gomes, P. B.; Mata, V. G.; Barreiro, M. F.; Rodrigues, A. E. Scentfashion®: Microencapsulated perfumes for textile application. Chem. Eng. J. 2009, 149, 463–472.

[21]

Bonet Aracil, M. Á.; Monllor, P.; Capablanca, L.; Gisbert, J.; Díaz, P.; Montava, I. A comparison between padding and bath exhaustion to apply microcapsules onto cotton. Cellulose 2015, 22, 2117–2127.

[22]

Li, Y.; Chen, S. S.; Wu, M. C.; Sun, J. Q. All spraying processes for the fabrication of robust, self-healing, superhydrophobic coatings. Adv. Mater. 2014, 26, 3344–3348.

[23]

Ghayempour, S.; Montazer, M. Tragacanth nanocapsules containing Chamomile extract prepared through sono-assisted W/O/W microemulsion and UV cured on cotton fabric. Carbohydr. Polym. 2017, 170, 234–240.

[24]

Saini, K.; Ramanathan, V. Predicting odor from molecular structure: A multi-label classification approach. Sci. Rep. 2022, 12, 13863.

[25]

Duncan, B.; Le, N. D. B.; Alexander, C.; Gupta, A.; Yesilbag Tonga, G.; Yazdani, M.; Landis, R. F.; Wang, L. S.; Yan, B.; Burmaoglu, S. et al. Sensing by smell: Nanoparticle-enzyme sensors for rapid and sensitive detection of bacteria with olfactory output. ACS Nano 2017, 11, 5339–5343.

[26]

Burgess, J. E.; Parsons, S. A.; Stuetz, R. M. Developments in odour control and waste gas treatment biotechnology: A review. Biotechnol. Adv. 2001, 19, 35–63.

[27]

Chuang, L. C.; Luo, C. H. Characterization of supported TiO2-based catalysts green-prepared and employed for photodegradation of malodorous DMDS. Mater. Res. Bull. 2013, 48, 238–244.

[28]

Easter, C.; Quigley, C.; Burrowes, P.; Witherspoon, J.; Apgar, D. Odor and air emissions control using biotechnology for both collection and wastewater treatment systems. Chem. Eng. J. 2005, 113, 93–104.

[29]

Lebrero, R.; Bouchy, L.; Stuetz, R.; Muñoz, R. Odor assessment and management in wastewater treatment plants: A review. Crit. Rev. Environ. Sci. Technol. 2011, 41, 915–950.

[30]

Liu, B. X.; Giannis, A.; Chen, A. L.; Zhang, J. F.; Chang, V. W. C.; Wang, J. Y. Determination of urine-derived odorous compounds in a source separation sanitation system. J. Environ. Sci. 2017, 52, 240–249.

[31]

Ma, J. J.; Zhang, N.; Cheng, Y.; Kou, X. R.; Niu, Y. W.; Jin, X. Y.; Ke, Q. F.; Zhao, Y. Green fabrication of multifunctional three-dimensional superabsorbent nonwovens with thermo-bonding fibers. Adv. Fiber Mater. 2022, 4, 293–304.

[32]

Wang, S.; Li, J. N.; Cao, Y. H.; Gu, J. W.; Wang, Y. F.; Chen, S. G. Non-leaching, rapid bactericidal and biocompatible polyester fabrics finished with benzophenone terminated N-halamine. Adv. Fiber Mater. 2022, 4, 119–128.

[33]

Lu, T.; Cao, W. X.; Liang, H. B.; Deng, Y. K.; Zhang, Y. Y.; Zhu, M. M.; Ma, W. J.; Xiong, R. H.; Huang, C. B. Blow-spun nanofibrous membrane for simultaneous treatment of emulsified oil/water mixtures, dyes, and bacteria. Langmuir 2022, 38, 15729–15739.

[34]

Lu, T.; Liang, H. B.; Cao, W. X.; Deng, Y. K.; Qu, Q. L.; Ma, W. J.; Xiong, R. H.; Huang, C. B. Blow-spun nanofibrous composite self-cleaning membrane for enhanced purification of oily wastewater. J. Colloid Interface Sci. 2022, 608, 2860–2869.

[35]

Morales-Cruz, M.; López-Nieves, M.; Morales-Hernández, R.; Rivera-Crespo, G. C.; Toranzos, G. A.; González-González, I.; Cabrera, C. R. Proteus vulgaris-Pt electrode system for urea to nitrogen conversion in synthetic urine. Bioelectrochemistry 2018, 122, 206–212.

[36]

Gatt, D.; Lendner, I.; Ben-Shimol, S. Catheter-obtained, Enterococcus and Proteus positive urine cultures may represent mostly contamination or asymptomatic bacteriuria in infants < 90 days. Infect. Dis. 2021, 53, 332–339.

[37]

Kumar, M. S.; Das, A. P. Molecular identification of multi drug resistant bacteria from urinary tract infected urine samples. Microb. Pathog. 2016, 98, 37–44.

[38]

Mohammed, A.; Abdelfattah, M.; Ibraheem, A.; Younes, A. A study of asymptomatic bacteriuria in Egyptian school-going children. Afr. Health Sci. 2016, 16, 69–74.

[39]

Tandan, M.; Sloane, P. D.; Ward, K.; Weber, D. J.; Vellinga, A.; Kistler, C. E.; Zimmerman, S. Antimicrobial resistance patterns of urine culture specimens from 27 nursing homes: Impact of a two-year antimicrobial stewardship intervention. Infect. Control Hosp. Epidemiol. 2019, 40, 780–786.

[40]

Aytac, Z.; Yildiz, Z. I.; Kayaci-Senirmak, F.; San Keskin, N. O.; Kusku, S. I.; Durgun, E.; Tekinay, T.; Uyar, T. Fast-dissolving, prolonged release, and antibacterial cyclodextrin/limonene-inclusion complex nanofibrous webs via polymer-free electrospinning. J. Agric. Food Chem. 2016, 64, 7325–7334.

[41]

Celebioglu, A.; Kayaci-Senirmak, F.; İpek, S.; Durgun, E.; Uyar, T. Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: High thermal stability, enhanced solubility and antioxidant property. Food Funct. 2016, 7, 3141–3153.

[42]

Topuz, F.; Kilic, M. E.; Durgun, E.; Szekely, G. Fast-dissolving antibacterial nanofibers of cyclodextrin/antibiotic inclusion complexes for oral drug delivery. J. Colloid Interface Sci. 2021, 585, 184–194.

Nano Research
Pages 2172-2180
Cite this article:
Ma J, Xia Y, Zhao T, et al. Adaptable "bubble particles" prepared by green aqueous phase reshaping for completely removing odor. Nano Research, 2024, 17(3): 2172-2180. https://doi.org/10.1007/s12274-023-5973-7
Topics:

593

Views

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 11 May 2023
Revised: 22 June 2023
Accepted: 30 June 2023
Published: 09 August 2023
© Tsinghua University Press 2023
Return