Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
MXene-based films have been intensively explored for construction of piezoresistive flexible pressure sensors owing to their excellent mechanical and electrical properties. High pressure sensitivity relies on pre-molding a flexible substrate, or regulating the micromorphology of MXene sheets, to obtain a micro-structured surface. However, the two avenues usually require complicated and time-consuming microfabrication or wet chemical processing, and are limited to non-adjustable topographic-electrical (topo-electro) properties. Herein, we propose a lithographic printing inspired in-situ transfer (LIPIT) strategy to fabricate MXene-ink films (MIFs). In LIPIT, MIFs not only inherit ridge-and-valley microstructure from paper substrate, but also achieve localized topo-electro tunability by programming ink-writing patterns and cycles. The MIF-based flexible pressure sensor with periodical topo-electro gradient exhibits remarkably boosted sensitivity in a wide sensing range (low detection limit of 0.29 Pa and working range of 100 kPa). The MIF sensor demonstrates versatile applicability in both subtle and vigorous pressure-sensing fields, ranging from pulse wave extraction and machine learning-assisted surface texture recognition to piano-training glove (PT-glove) for piano learning. The LIPIT is quick, low-cost, and compatible with free ink/substrate combinations, which promises a versatile toolbox for designing functional MXene films with tailored morphological-mechanical-electrical properties for extended application scenarios.
Li, W. R.; Li, C. H.; Zhang, G. Z.; Li, L. K.; Huang, K.; Gong, X. T.; Zhang, C.; Zheng, A.; Tang, Y. X.; Wang, Z. Z. et al. Molecular ferroelectric-based flexible sensors exhibiting supersensitivity and multimodal capability for detection. Adv. Mater. 2021, 33, 2104107.
Xu, K. C.; Fujita, Y.; Lu, Y. Y.; Honda, S.; Shiomi, M.; Arie, T.; Akita, S.; Takei, K. A wearable body condition sensor system with wireless feedback alarm functions. Adv. Mater. 2021, 33, 2008701.
Li, T.; Li, Y.; Zhang, T. Materials, structures, and functions for flexible and stretchable biomimetic sensors. Acc. Chem. Res. 2019, 52, 288–296.
Lei, D. D.; Liu, N. S.; Su, T. Y.; Zhang, Q. X.; Wang, L. X.; Ren, Z. Q.; Gao, Y. H. Roles of MXene in pressure sensing: Preparation, composite structure design, and mechanism. Adv. Mater. 2022, 34, 2110608.
He, F. L.; You, X. Y.; Wang, W. G.; Bai, T.; Xue, G. F.; Ye, M. D. Recent progress in flexible microstructural pressure sensors toward human–machine interaction and healthcare applications. Small Methods 2021, 5, 2001041.
Huang, Y.; Fan, X. Y.; Chen, S. C.; Zhao, N. Emerging technologies of flexible pressure sensors: Materials, modeling, devices, and manufacturing. Adv. Funct. Mater. 2019, 29, 1808509.
Liu, M. Y.; Hang, C. Z.; Zhao, X. F.; Zhu, L. Y.; Ma, R. G.; Wang, J. C.; Lu, H. L.; Zhang, D. W. Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial. Nano Energy 2021, 87, 106181.
Wang, K. X.; Yap, L. W.; Gong, S.; Wang, R.; Wang, S. J.; Cheng, W. L. Nanowire-based soft wearable human–machine interfaces for future virtual and augmented reality applications. Adv. Funct. Mater. 2021, 31, 2008347.
Meng, K. Y.; Xiao, X.; Wei, W. X.; Chen, G. R.; Nashalian, A.; Shen, S.; Xiao, X.; Chen, J. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 2022, 34, 2109357.
Cui, Z. Q.; Wang, W. S.; Xia, H. R.; Wang, C. X.; Tu, J. Q.; Ji, S. B.; Tan, J. M. R.; Liu, Z. H.; Zhang, F. L.; Li, W. L. et al. Freestanding and scalable force-softness bimodal sensor arrays for haptic body-feature identification. Adv. Mater. 2022, 34, 2207016.
Shi, X. L.; Fan, X. Q.; Zhu, Y. B.; Liu, Y.; Wu, P. Q.; Jiang, R. H.; Wu, B.; Wu, H. A.; Zheng, H.; Wang, J. B. et al. Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nat. Commun. 2022, 13, 1119.
Baek, S.; Lee, Y.; Baek, J.; Kwon, J.; Kim, S.; Lee, S.; Strunk, K. P.; Stehlin, S.; Melzer, C.; Park, S. M. et al. Spatiotemporal measurement of arterial pulse waves enabled by wearable active-matrix pressure sensor arrays. ACS Nano 2022, 16, 368–377.
Meng, K. Y.; Wu, Y. F.; He, Q.; Zhou, Z. H.; Wang, X.; Zhang, G. Q.; Fan, W. J.; Liu, J.; Yang, J. Ultrasensitive fingertip-contacted pressure sensors to enable continuous measurement of epidermal pulse waves on ubiquitous object surfaces. ACS Appl. Mater. Interfaces 2019, 11, 46399–46407.
Wang, Y. X.; Yue, Y.; Cheng, F.; Cheng, Y. F.; Ge, B. H.; Liu, N. S.; Gao, Y. H. Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano 2022, 16, 1734–1758.
Zheng, Q. B.; Lee, J. H.; Shen, X.; Chen, X. D.; Kim, J. K. Graphene-based wearable piezoresistive physical sensors. Mater. Today 2020, 36, 158–179.
Ruth, S. R. A.; Feig, V. R.; Tran, H.; Bao, Z. N. Microengineering pressure sensor active layers for improved performance. Adv. Funct. Mater. 2020, 30, 2003491.
Shi, Z. Y.; Meng, L. X.; Shi, X. L.; Li, H. P.; Zhang, J. Z.; Sun, Q. Q.; Liu, X. Y.; Chen, J. Z.; Liu, S. R. Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 2022, 14, 141.
Song, S. Q.; Zhang, C. F.; Li, W. Z.; Wang, J. C.; Rao, P. H.; Wang, J.; Li, T. T.; Zhang, Y. Bioinspired engineering of gradient and hierarchical architecture into pressure sensors toward high sensitivity within ultra-broad working range. Nano Energy 2022, 100, 107513.
Tao, L. Q.; Zhang, K. N.; Tian, H.; Liu, Y.; Wang, D. Y.; Chen, Y. Q.; Yang, Y.; Ren, T. L. Graphene-paper pressure sensor for detecting human motions. ACS Nano 2017, 11, 8790–8795.
Ma, Y. N.; Liu, N. S.; Li, L. Y.; Hu, X. K.; Zou, Z. G.; Wang, J. B.; Luo, S. J.; Gao, Y. H. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 2017, 8, 1207.
Huang, C. B.; Witomska, S.; Aliprandi, A.; Stoeckel, M. A.; Bonini, M.; Ciesielski, A.; Samorì, P. Molecule-graphene hybrid materials with tunable mechanoresponse: Highly sensitive pressure sensors for health monitoring. Adv. Mater. 2019, 31, 1804600.
Tang, X. Y.; Yang, W. D.; Yin, S. R.; Tai, G. J.; Su, M.; Yang, J.; Shi, H. F.; Wei, D. P.; Yang, J. Controllable graphene wrinkle for a high-performance flexible pressure sensor. ACS Appl. Mater. Interfaces 2021, 13, 20448–20458.
Pang, Y.; Zhang, K. N.; Yang, Z.; Jiang, S.; Ju, Z. Y.; Li, Y. X.; Wang, X. F.; Wang, D. Y.; Jian, M. Q.; Zhang, Y. Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 2018, 12, 2346–2354.
Jung, Y.; Choi, J.; Lee, W.; Ko, J. S.; Park, I.; Cho, H. Irregular microdome structure-based sensitive pressure sensor using internal popping of microspheres. Adv. Funct. Mater. 2022, 32, 2201147.
Tang, H.; Nie, P.; Wang, R. R.; Sun, J. Piezoresistive electronic skin based on diverse bionic microstructure. Sens. Actuators A Phys. 2021, 318, 112532.
Zhang, Y. J.; Wang, Y. H.; Wang, C. Y.; Zhao, Y. F.; Jing, W. X.; Wang, S.; Zhang, Y. X.; Xu, X. Y.; Zhang, F. Z.; Yu, K. G. et al. Superior performances via designed multiple embossments within interfaces for flexible pressure sensors. Chem. Eng. J 2023, 454, 139990.
Yin, B.; Liu, X. M.; Gao, H. Y.; Fu, T. D.; Yao, J. Bioinspired and bristled microparticles for ultrasensitive pressure and strain sensors. Nat. Commun. 2018, 9, 5161.
Wang, L. L.; Jackman, J. A.; Tan, E. L.; Park, J. H.; Potroz, M. G.; Hwang, E. T.; Cho, N. J. High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. Nano Energy 2017, 36, 38–45.
Zhang, H.; Zhang, D. Z.; Zhang, B.; Wang, D. Y.; Tang, M. C. Wearable pressure sensor array with layer-by-layer assembled MXene nanosheets/Ag nanoflowers for motion monitoring and human–machine interfaces. ACS Appl. Mater. Interfaces 2022, 14, 48907–48916.
VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.
Wyatt, B. C.; Rosenkranz, A.; Anasori, B. 2D MXenes: Tunable mechanical and tribological properties. Adv. Mater. 2021, 33, 2007973.
Ming, F. W.; Liang, H. F.; Huang, G.; Bayhan, Z.; Alshareef, H. N. MXenes for rechargeable batteries beyond the lithium-ion. Adv. Mater. 2021, 33, 2004039.
Wang, Y. Z.; Guo, T. C.; Tian, Z. N.; Bibi, K.; Zhang, Y. Z.; Alshareef, H. N. MXenes for energy harvesting. Adv. Mater. 2022, 34, 2108560.
Han, M. K.; Shuck, C. E.; Rakhmanov, R.; Parchment, D.; Anasori, B.; Koo, C. M.; Friedman, G.; Gogotsi, Y. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 2020, 14, 5008–5016.
Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 2020, 30, 2000883.
Li, N.; Peng, J. H.; Ong, W. J.; Ma, T. T.; Arramel, N.; Zhang, P.; Jiang, J. Z.; Yuan, X. F.; Zhang, C. F. MXenes: An emerging platform for wearable electronics and looking beyond. Matter 2021, 4, 377–407.
Xu, B.; Gogotsi, Y. MXenes: From discovery to applications. Adv. Funct. Mater. 2020, 30, 2007011.
Yang, Z. J.; Lv, S. Y.; Zhang, Y. Y.; Wang, J.; Jiang, L.; Jia, X. T.; Wang, C. G.; Yan, X.; Sun, P.; Duan, Y. et al. Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano-Micro Lett. 2022, 14, 56.
Wang, K.; Lou, Z.; Wang, L. L.; Zhao, L. J.; Zhao, S. F.; Wang, D. Y.; Han, W.; Jiang, K.; Shen, G. Z. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 2019, 13, 9139–9147.
Ma, Y. N.; Cheng, Y. F.; Wang, J.; Fu, S.; Zhou, M. J.; Yang, Y.; Li, B. W.; Zhang, X.; Nan, C. W. Flexible and highly-sensitive pressure sensor based on controllably oxidized MXene. InfoMat 2022, 4, e12328.
Nie, P.; Wang, R. R.; Xu, X. J.; Cheng, Y.; Wang, X.; Shi, L. J.; Sun, J. High-performance piezoresistive electronic skin with bionic hierarchical microstructure and microcracks. ACS Appl. Mater. Interfaces 2017, 9, 14911–14919.
Hou, Y. X.; Wang, L.; Sun, R.; Zhang, Y. N.; Gu, M. X.; Zhu, Y. H.; Tong, Y. B.; Liu, X. Y.; Wang, Z. X.; Xia, J. et al. Crack-across-pore enabled high-performance flexible pressure sensors for deep neural network enhanced sensing and human action recognition. ACS Nano 2022, 16, 8358–8369.
Su, T. Y.; Liu, N. S.; Lei, D. D.; Wang, L. X.; Ren, Z. Q.; Zhang, Q. X.; Su, J.; Zhang, Z.; Gao, Y. H. Flexible MXene/bacterial cellulose film sound detector based on piezoresistive sensing mechanism. ACS Nano 2022, 16, 8461–8471.