AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Lithographic printing inspired in-situ transfer of MXene-based films with localized topo-electro tunability for high-performance flexible pressure sensors

Qiuyang Yan1,2,§Yi Zhou3,§Yin Cheng1( )Liangjing Shi1Ranran Wang1,4( )Lian Gao5Jing Sun1
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

§ Qiuyang Yan and Yi Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

A lithographic printing inspired in-situ transfer (LIPIT) strategy for fabrication of MXene-based films is proposed. LIPIT-enabled MXene-ink films (MIFs) achieve not only micro-structured conductive surface, but also localized tunability of topographic-electrical (topo-electro) properties through programming ink-writing patterns and cycles. LIPIT offers a versatile toolbox for designing functional MXene films with tailored morphological-mechanical-electrical properties for extended application scenarios.

Abstract

MXene-based films have been intensively explored for construction of piezoresistive flexible pressure sensors owing to their excellent mechanical and electrical properties. High pressure sensitivity relies on pre-molding a flexible substrate, or regulating the micromorphology of MXene sheets, to obtain a micro-structured surface. However, the two avenues usually require complicated and time-consuming microfabrication or wet chemical processing, and are limited to non-adjustable topographic-electrical (topo-electro) properties. Herein, we propose a lithographic printing inspired in-situ transfer (LIPIT) strategy to fabricate MXene-ink films (MIFs). In LIPIT, MIFs not only inherit ridge-and-valley microstructure from paper substrate, but also achieve localized topo-electro tunability by programming ink-writing patterns and cycles. The MIF-based flexible pressure sensor with periodical topo-electro gradient exhibits remarkably boosted sensitivity in a wide sensing range (low detection limit of 0.29 Pa and working range of 100 kPa). The MIF sensor demonstrates versatile applicability in both subtle and vigorous pressure-sensing fields, ranging from pulse wave extraction and machine learning-assisted surface texture recognition to piano-training glove (PT-glove) for piano learning. The LIPIT is quick, low-cost, and compatible with free ink/substrate combinations, which promises a versatile toolbox for designing functional MXene films with tailored morphological-mechanical-electrical properties for extended application scenarios.

Electronic Supplementary Material

Video
12274_2023_5974_MOESM2_ESM.mp4
Download File(s)
12274_2023_5974_MOESM1_ESM.pdf (7.3 MB)

References

[1]

Li, W. R.; Li, C. H.; Zhang, G. Z.; Li, L. K.; Huang, K.; Gong, X. T.; Zhang, C.; Zheng, A.; Tang, Y. X.; Wang, Z. Z. et al. Molecular ferroelectric-based flexible sensors exhibiting supersensitivity and multimodal capability for detection. Adv. Mater. 2021, 33, 2104107.

[2]

Xu, K. C.; Fujita, Y.; Lu, Y. Y.; Honda, S.; Shiomi, M.; Arie, T.; Akita, S.; Takei, K. A wearable body condition sensor system with wireless feedback alarm functions. Adv. Mater. 2021, 33, 2008701.

[3]

Li, T.; Li, Y.; Zhang, T. Materials, structures, and functions for flexible and stretchable biomimetic sensors. Acc. Chem. Res. 2019, 52, 288–296.

[4]

Lei, D. D.; Liu, N. S.; Su, T. Y.; Zhang, Q. X.; Wang, L. X.; Ren, Z. Q.; Gao, Y. H. Roles of MXene in pressure sensing: Preparation, composite structure design, and mechanism. Adv. Mater. 2022, 34, 2110608.

[5]

He, F. L.; You, X. Y.; Wang, W. G.; Bai, T.; Xue, G. F.; Ye, M. D. Recent progress in flexible microstructural pressure sensors toward human–machine interaction and healthcare applications. Small Methods 2021, 5, 2001041.

[6]

Huang, Y.; Fan, X. Y.; Chen, S. C.; Zhao, N. Emerging technologies of flexible pressure sensors: Materials, modeling, devices, and manufacturing. Adv. Funct. Mater. 2019, 29, 1808509.

[7]

Liu, M. Y.; Hang, C. Z.; Zhao, X. F.; Zhu, L. Y.; Ma, R. G.; Wang, J. C.; Lu, H. L.; Zhang, D. W. Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial. Nano Energy 2021, 87, 106181.

[8]

Wang, K. X.; Yap, L. W.; Gong, S.; Wang, R.; Wang, S. J.; Cheng, W. L. Nanowire-based soft wearable human–machine interfaces for future virtual and augmented reality applications. Adv. Funct. Mater. 2021, 31, 2008347.

[9]

Meng, K. Y.; Xiao, X.; Wei, W. X.; Chen, G. R.; Nashalian, A.; Shen, S.; Xiao, X.; Chen, J. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 2022, 34, 2109357.

[10]

Cui, Z. Q.; Wang, W. S.; Xia, H. R.; Wang, C. X.; Tu, J. Q.; Ji, S. B.; Tan, J. M. R.; Liu, Z. H.; Zhang, F. L.; Li, W. L. et al. Freestanding and scalable force-softness bimodal sensor arrays for haptic body-feature identification. Adv. Mater. 2022, 34, 2207016.

[11]

Shi, X. L.; Fan, X. Q.; Zhu, Y. B.; Liu, Y.; Wu, P. Q.; Jiang, R. H.; Wu, B.; Wu, H. A.; Zheng, H.; Wang, J. B. et al. Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nat. Commun. 2022, 13, 1119.

[12]

Baek, S.; Lee, Y.; Baek, J.; Kwon, J.; Kim, S.; Lee, S.; Strunk, K. P.; Stehlin, S.; Melzer, C.; Park, S. M. et al. Spatiotemporal measurement of arterial pulse waves enabled by wearable active-matrix pressure sensor arrays. ACS Nano 2022, 16, 368–377.

[13]

Meng, K. Y.; Wu, Y. F.; He, Q.; Zhou, Z. H.; Wang, X.; Zhang, G. Q.; Fan, W. J.; Liu, J.; Yang, J. Ultrasensitive fingertip-contacted pressure sensors to enable continuous measurement of epidermal pulse waves on ubiquitous object surfaces. ACS Appl. Mater. Interfaces 2019, 11, 46399–46407.

[14]

Wang, Y. X.; Yue, Y.; Cheng, F.; Cheng, Y. F.; Ge, B. H.; Liu, N. S.; Gao, Y. H. Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano 2022, 16, 1734–1758.

[15]

Zheng, Q. B.; Lee, J. H.; Shen, X.; Chen, X. D.; Kim, J. K. Graphene-based wearable piezoresistive physical sensors. Mater. Today 2020, 36, 158–179.

[16]

Ruth, S. R. A.; Feig, V. R.; Tran, H.; Bao, Z. N. Microengineering pressure sensor active layers for improved performance. Adv. Funct. Mater. 2020, 30, 2003491.

[17]

Shi, Z. Y.; Meng, L. X.; Shi, X. L.; Li, H. P.; Zhang, J. Z.; Sun, Q. Q.; Liu, X. Y.; Chen, J. Z.; Liu, S. R. Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 2022, 14, 141.

[18]

Song, S. Q.; Zhang, C. F.; Li, W. Z.; Wang, J. C.; Rao, P. H.; Wang, J.; Li, T. T.; Zhang, Y. Bioinspired engineering of gradient and hierarchical architecture into pressure sensors toward high sensitivity within ultra-broad working range. Nano Energy 2022, 100, 107513.

[19]

Tao, L. Q.; Zhang, K. N.; Tian, H.; Liu, Y.; Wang, D. Y.; Chen, Y. Q.; Yang, Y.; Ren, T. L. Graphene-paper pressure sensor for detecting human motions. ACS Nano 2017, 11, 8790–8795.

[20]

Ma, Y. N.; Liu, N. S.; Li, L. Y.; Hu, X. K.; Zou, Z. G.; Wang, J. B.; Luo, S. J.; Gao, Y. H. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 2017, 8, 1207.

[21]

Huang, C. B.; Witomska, S.; Aliprandi, A.; Stoeckel, M. A.; Bonini, M.; Ciesielski, A.; Samorì, P. Molecule-graphene hybrid materials with tunable mechanoresponse: Highly sensitive pressure sensors for health monitoring. Adv. Mater. 2019, 31, 1804600.

[22]

Tang, X. Y.; Yang, W. D.; Yin, S. R.; Tai, G. J.; Su, M.; Yang, J.; Shi, H. F.; Wei, D. P.; Yang, J. Controllable graphene wrinkle for a high-performance flexible pressure sensor. ACS Appl. Mater. Interfaces 2021, 13, 20448–20458.

[23]

Pang, Y.; Zhang, K. N.; Yang, Z.; Jiang, S.; Ju, Z. Y.; Li, Y. X.; Wang, X. F.; Wang, D. Y.; Jian, M. Q.; Zhang, Y. Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 2018, 12, 2346–2354.

[24]

Jung, Y.; Choi, J.; Lee, W.; Ko, J. S.; Park, I.; Cho, H. Irregular microdome structure-based sensitive pressure sensor using internal popping of microspheres. Adv. Funct. Mater. 2022, 32, 2201147.

[25]

Tang, H.; Nie, P.; Wang, R. R.; Sun, J. Piezoresistive electronic skin based on diverse bionic microstructure. Sens. Actuators A Phys. 2021, 318, 112532.

[26]

Zhang, Y. J.; Wang, Y. H.; Wang, C. Y.; Zhao, Y. F.; Jing, W. X.; Wang, S.; Zhang, Y. X.; Xu, X. Y.; Zhang, F. Z.; Yu, K. G. et al. Superior performances via designed multiple embossments within interfaces for flexible pressure sensors. Chem. Eng. J 2023, 454, 139990.

[27]

Yin, B.; Liu, X. M.; Gao, H. Y.; Fu, T. D.; Yao, J. Bioinspired and bristled microparticles for ultrasensitive pressure and strain sensors. Nat. Commun. 2018, 9, 5161.

[28]

Wang, L. L.; Jackman, J. A.; Tan, E. L.; Park, J. H.; Potroz, M. G.; Hwang, E. T.; Cho, N. J. High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. Nano Energy 2017, 36, 38–45.

[29]

Zhang, H.; Zhang, D. Z.; Zhang, B.; Wang, D. Y.; Tang, M. C. Wearable pressure sensor array with layer-by-layer assembled MXene nanosheets/Ag nanoflowers for motion monitoring and human–machine interfaces. ACS Appl. Mater. Interfaces 2022, 14, 48907–48916.

[30]

VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

[31]

Wyatt, B. C.; Rosenkranz, A.; Anasori, B. 2D MXenes: Tunable mechanical and tribological properties. Adv. Mater. 2021, 33, 2007973.

[32]

Ming, F. W.; Liang, H. F.; Huang, G.; Bayhan, Z.; Alshareef, H. N. MXenes for rechargeable batteries beyond the lithium-ion. Adv. Mater. 2021, 33, 2004039.

[33]

Wang, Y. Z.; Guo, T. C.; Tian, Z. N.; Bibi, K.; Zhang, Y. Z.; Alshareef, H. N. MXenes for energy harvesting. Adv. Mater. 2022, 34, 2108560.

[34]

Han, M. K.; Shuck, C. E.; Rakhmanov, R.; Parchment, D.; Anasori, B.; Koo, C. M.; Friedman, G.; Gogotsi, Y. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 2020, 14, 5008–5016.

[35]

Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 2020, 30, 2000883.

[36]

Li, N.; Peng, J. H.; Ong, W. J.; Ma, T. T.; Arramel, N.; Zhang, P.; Jiang, J. Z.; Yuan, X. F.; Zhang, C. F. MXenes: An emerging platform for wearable electronics and looking beyond. Matter 2021, 4, 377–407.

[37]

Xu, B.; Gogotsi, Y. MXenes: From discovery to applications. Adv. Funct. Mater. 2020, 30, 2007011.

[38]

Yang, Z. J.; Lv, S. Y.; Zhang, Y. Y.; Wang, J.; Jiang, L.; Jia, X. T.; Wang, C. G.; Yan, X.; Sun, P.; Duan, Y. et al. Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano-Micro Lett. 2022, 14, 56.

[39]

Wang, K.; Lou, Z.; Wang, L. L.; Zhao, L. J.; Zhao, S. F.; Wang, D. Y.; Han, W.; Jiang, K.; Shen, G. Z. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 2019, 13, 9139–9147.

[40]

Ma, Y. N.; Cheng, Y. F.; Wang, J.; Fu, S.; Zhou, M. J.; Yang, Y.; Li, B. W.; Zhang, X.; Nan, C. W. Flexible and highly-sensitive pressure sensor based on controllably oxidized MXene. InfoMat 2022, 4, e12328.

[41]

Nie, P.; Wang, R. R.; Xu, X. J.; Cheng, Y.; Wang, X.; Shi, L. J.; Sun, J. High-performance piezoresistive electronic skin with bionic hierarchical microstructure and microcracks. ACS Appl. Mater. Interfaces 2017, 9, 14911–14919.

[42]

Hou, Y. X.; Wang, L.; Sun, R.; Zhang, Y. N.; Gu, M. X.; Zhu, Y. H.; Tong, Y. B.; Liu, X. Y.; Wang, Z. X.; Xia, J. et al. Crack-across-pore enabled high-performance flexible pressure sensors for deep neural network enhanced sensing and human action recognition. ACS Nano 2022, 16, 8358–8369.

[43]

Su, T. Y.; Liu, N. S.; Lei, D. D.; Wang, L. X.; Ren, Z. Q.; Zhang, Q. X.; Su, J.; Zhang, Z.; Gao, Y. H. Flexible MXene/bacterial cellulose film sound detector based on piezoresistive sensing mechanism. ACS Nano 2022, 16, 8461–8471.

Nano Research
Pages 12670-12679
Cite this article:
Yan Q, Zhou Y, Cheng Y, et al. Lithographic printing inspired in-situ transfer of MXene-based films with localized topo-electro tunability for high-performance flexible pressure sensors. Nano Research, 2023, 16(11): 12670-12679. https://doi.org/10.1007/s12274-023-5974-6
Topics:

897

Views

4

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 15 May 2023
Revised: 26 June 2023
Accepted: 02 July 2023
Published: 01 August 2023
© Tsinghua University Press 2023
Return