AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Stabilizing semi-transparent perovskite solar cells with a polymer composite hole transport layer

Yongbin Jin,§Huiping Feng,§Zheng FangLiu YangKaikai LiuBingru DengJingfu ChenXueling ChenYawen ZhongJinxin YangChengbo TianLiqiang Xie( )Zhanhua Wei( )
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China

§ Yongbin Jin and Huiping Feng contributed equally to this work.

Show Author Information

Graphical Abstract

A polymer composite hole transport layer containing the π-conjugated polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c: 4',5'-c']dithiophene-4,8-dione)] (PBDB-T) and 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene (Spiro-OMeTAD) is used to stabilize semi-transparent perovskite solar cells (ST-PSCs), contributing to 13.71%-efficiency ST-PSCs with improved thermal and operational stability.

Abstract

Semi-transparent perovskite solar cells (ST-PSCs) have broad applications in building integrated photovoltaics. However, the stability of ST-PSCs needs to be improved, especially in n-i-p ST-PSCs since the doped 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene (Spiro-OMeTAD) is unstable at elevated temperatures and high humidity. In this work, a π-conjugated polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)] (PBDB-T) is selected to form a polymer composite hole transport layer (HTL) with Spiro-OMeTAD. The sulfur atom of the thiophene unit and the carbonyl group of the polymer interact with the undercoordinated Pb2+ at the perovskite surface, which stabilizes the perovskite/HTL interface and passivates the interfacial defects. The incorporation of the polymer also increases the glass transition temperature and the moisture resistance of Spiro-OMeTAD. As a result, we obtain ST-PSCs with a champion efficiency of 13.71% and an average visible light transmittance of 36.04%. Therefore, a high light utilization efficiency of 4.94% can be obtained. Moreover, the encapsulated device can maintain 84% of the initial efficiency after 751 h under continuous one-sun illumination (at 30% relative humidity) at the open circuit and the unencapsulated device can maintain 80% of the initial efficiency after maximum power tracking for more than 1250 h under continuous one-sun illumination.

Electronic Supplementary Material

Download File(s)
12274_2023_5975_MOESM1_ESM.pdf (1.7 MB)
12274_2023_5975_MOESM2_ESM.pdf (805.3 KB)

References

[1]

Batmunkh, M.; Zhong, Y. L.; Zhao, H. J. Recent advances in perovskite-based building-integrated photovoltaics. Adv. Mater. 2020, 32, 2000631.

[2]

Bush, K. A.; Bailie, C. D.; Chen, Y.; Bowring, A. R.; Wang, W.; Ma, W.; Leijtens, T.; Moghadam, F.; McGehee, M. D. Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanoparticle buffer layer and sputtered ITO electrode. Adv. Mater. 2016, 28, 3937–3943.

[3]

Koh, T. M.; Wang, H.; Ng, Y. F.; Bruno, A.; Mhaisalkar, S.; Mathews, N. Halide perovskite solar cells for building integrated photovoltaics: Transforming building façades into power generators. Adv. Mater. 2022, 34, 2104661.

[4]

Bing, J. M.; Caro, L. G.; Talathi, H. P.; Chang, N. L.; McKenzie, D. R.; Ho-Baillie, A. W. Y. Perovskite solar cells for building integrated photovoltaics-glazing applications. Joule 2022, 6, 1446–1474.

[5]

Traverse, C. J.; Pandey, R.; Barr, M. C.; Lunt, R. R. Emergence of highly transparent photovoltaics for distributed applications. Nat. Energy 2017, 2, 849–860.

[6]

Lee, K. T.; Jang, J. Y.; Ha, N. Y.; Lee, S.; Park, H. J. High-performance colorful semitransparent perovskite solar cells with phase-compensated microcavities. Nano Res. 2018, 11, 2553–2561.

[7]

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

[8]

Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

[9]

Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.;Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.

[10]

Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

[11]

Yang, W. S.; Noh, J. H.; Joong, N.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.

[12]

Yang, L.; Jin, Y. B.; Fang, Z.; Zhang, J. Y.; Nan, Z.; Zheng, L. F.; Zhuang, H. H.; Zeng, Q. H.; Liu, K. K.; Deng, B. R. et al. Efficient semi-transparent wide-bandgap perovskite solar cells enabled by pure-chloride 2D-perovskite passivation. Nano-Micro Lett. 2023, 15, 111.

[13]

Liu, K. K.; Tian, C. B.; Liang, Y. M.; Luo, Y. J.; Xie, L. Q.; Wei, Z. H. Progress toward understanding the fullerene-related chemical interactions in perovskite solar cells. Nano Res. 2022, 15, 7139–7153.

[14]

Mujahid, M.; Chen, C.; Zhang, J.; Li, C. N.; Duan, Y. Recent advances in semitransparent perovskite solar cells. InfoMat 2021, 3, 101–124.

[15]

Yu, J. C.; Li, B.; Dunn, C. J.; Yan, J. L.; Diroll, B. T.; Chesman, A. S. R.; Jasieniak, J. J. High-performance and stable semi-transparent perovskite solar cells through composition engineering. Adv. Sci. 2022, 9, 2201487.

[16]

Shi, H. X.; Zhang, L.; Huang, H.; Wang, X. T.; Li, Z. Y.; Xuan, D. Z.; Wang, C. Y.; Ou, Y. L.; Ni, C. J.; Li, D. G. et al. Simultaneous interfacial modification and defect passivation for wide-bandgap semitransparent perovskite solar cells with 14.4% power conversion efficiency and 38% average visible transmittance. Small 2022, 18, 2202144.

[17]

Jeong, M. J.; Lee, J. H.; You, C. H.; Kim, S. Y.; Lee, S.; Noh, J. H. Oxide/halide/oxide architecture for high performance semi-transparent perovskite solar cells. Adv. Energy Mater. 2022, 12, 2200661.

[18]

Yoon, S.; Ha, H. U.; Seok, H. J.; Kim, H. K.; Kang, D. W. Highly efficient and reliable semitransparent perovskite solar cells via top electrode engineering. Adv. Funct. Mater. 2022, 32, 2111760.

[19]

Lim, S. H.; Seok, H. J.; Kwak, M. J.; Choi, D. H.; Kim, S. K.; Kim, D. H.; Kim, H. K. Semi-transparent perovskite solar cells with bidirectional transparent electrodes. Nano Energy 2021, 82, 105703.

[20]
National Renewable Energy Laboratory. Best Research-Cell Efficiency Chart [Online]. https://www.nrel.gov/pv/cell-efficiency.html (accessed Jun 7, 2023).
[21]

Rombach, F. M.; Haque, S. A.; Macdonald, T. J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 2021, 14, 5161–5190.

[22]

Xu, D. D.; Mai, R. S.; Jiang, Y.; Chen, C.; Wang, R.; Xu, Z. J.; Kempa, K.; Zhou, G. F.; Liu, J. M.; Gao, J. W. An internal encapsulating layer for efficient, stable, repairable and low-lead-leakage perovskite solar cells. Energy Environ. Sci. 2022, 15, 3891–3900.

[23]

Liu, X.; Zheng, B. L.; Shi, L.; Zhou, S. J.; Xu, J. T.; Liu, Z. H.; Yun, J. S.; Choi, E.; Zhang, M.; Lv, Y. H. et al. Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive. Nat. Photonics 2022, 17, 96–105.

[24]

Wang, L. G.; Zhou, H. P.; Li, N. X.; Zhang, Y.; Chen, L. H. K.; Ke, X. X.; Chen, Z. X.; Wang, Z. L.; Sui, M. L.; Chen, Y. H. et al. Carrier transport composites with suppressed glass-transition for stable planar perovskite solar cells. J. Mater. Chem. A 2020, 8, 14106–14113.

[25]

Jeong, M.; Choi, I. W.; Yim, K.; Jeong, S.; Kim, M.; Choi, S. J.; Cho, Y.; An, J. H.; Kim, H. B.; Jo, Y. et al. Large-area perovskite solar cells employing spiro-Naph hole transport material. Nat. Photonics 2022, 16, 119–125.

[26]

Xu, D. D.; Gong, Z. M.; Jiang, Y.; Feng, Y. C.; Wang, Z.; Gao, X. S.; Lu, X. B.; Zhou, G. F.; Liu, J. M.; Gao, J. W. Constructing molecular bridge for high-efficiency and stable perovskite solar cells based on P3HT. Nat. Commun. 2022, 13, 7020.

[27]

Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T. Y.; Noh, J. H.; Seo, J. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 2019, 567, 511–515.

[28]

Wang, Q.; Bi, C.; Huang, J. S. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Nano Energy 2015, 15, 275–280.

[29]

Yu, C.; Zhang, B. Y.; Chen, C.; Wang, J. T.; Zhang, J.; Chen, P.; Li, C. N.; Duan, Y. Stable and highly efficient perovskite solar cells: Doping hydrophobic fluoride into hole transport material PTAA. Nano Res. 2022, 15, 4431–4438.

[30]

Jeong, M. J.; Yeom, K. M.; Kim, S. J.; Jung, E. H.; Noh, J. H. Spontaneous interface engineering for dopant-free poly(3-hexylthiophene) perovskite solar cells with efficiency over 24%. Energy Environ. Sci. 2021, 14, 2419–2428.

[31]

Wang, T.; Zhang, Y.; Kong, W. Y.; Qiao, L.; Peng, B. G.; Shen, Z. C.; Han, Q. F.; Chen, H.; Yuan, Z. L.; Zheng, R. K. et al. Transporting holes stably under iodide invasion in efficient perovskite solar cells. Science 2022, 377, 1227–1232.

[32]

Seo, J. Y.; Akin, S.; Zalibera, M.; Preciado, M. A. R.; Kim, H. S.; Zakeeruddin, S. M.; Milić, J. V.; Grätzel, M. Dopant engineering for spiro-OMeTAD hole-transporting materials towards efficient perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2102124.

[33]

Kong, J.; Shin, Y.; Röhr, J. A.; Wang, H.; Meng, J.; Wu, Y. S.; Katzenberg, A.; Kim, G.; Kim, D. Y.; Li, T. D. et al. CO2 doping of organic interlayers for perovskite solar cells. Nature 2021, 594, 51–56.

[34]

Jeong, M.; Choi, I. W.; Go, E. M.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H. W.; Lee, J. et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 2020, 369, 1615–1620.

[35]

Bai, Y. Q.; Zhou, Z. S.; Xue, Q. F.; Liu, C. C.; Li, N.; Tang, H. R.; Zhang, J. B.; Xia, X. X.; Zhang, J.; Lu, X. H. et al. Dopant-free bithiophene-imide-based polymeric hole-transporting materials for efficient and stable perovskite solar cells. Adv. Mater. 2022, 34, 2110587.

[36]

Liang, Y. M.; Song, P. Q.; Tian, H. R.; Tian, C. B.; Tian, W. J.; Nan, Z.; Cai, Y. T.; Yang, P. P.; Sun, C.; Chen, J. F. et al. Lead leakage preventable fullerene-porphyrin dyad for efficient and stable perovskite solar cells. Adv. Funct. Mater. 2021, 32, 2110139.

[37]

Xie, L. Q.; Lin, K. B.; Lu, J. X.; Feng, W. J.; Song, P. Q.; Yan, C. Z.; Liu, K. K.; Shen, L. N.; Tian, C. B.; Wei, Z. H. Efficient and stable low-bandgap perovskite solar cells enabled by a CsPbBr3-cluster assisted bottom-up crystallization approach. J. Am. Chem. Soc. 2019, 141, 20537–20546.

[38]

Shen, L. N.; Song, P. Q.; Zheng, L. F.; Liu, K. K.; Lin, K. B.; Tian, W. J.; Luo, Y. J.; Tian, C. B.; Xie, L. Q.; Wei, Z. H. Perovskite-type stabilizers for efficient and stable formamidinium-based lead iodide perovskite solar cells. J. Mater. Chem. A 2021, 9, 20807–20815.

[39]

Liu, K. K.; Luo, Y. J.; Jin, Y. B.; Liu, T. X.; Liang, Y. M.; Yang, L.; Song, P. Q.; Liu, Z. Y.; Tian, C. B.; Xie, L. Q. et al. Moisture-triggered fast crystallization enables efficient and stable perovskite solar cells. Nat. Commun. 2022, 13, 4891.

[40]

Fang, Z.; Yang, L.; Jin, Y. B.; Liu, K. K.; Feng, H. P.; Deng, B. R.; Zheng, L. F.; Cui, C. C.; Tian, C. B.; Xie, L. Q. et al. Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells. Chin. Phys. B 2022, 31, 118801.

[41]

Qin, P. L.; Yang, G.; Ren, Z. W.; Cheung, S. H.; So, S. K.; Chen, L.; Hao, J. H.; Hou, J. H.; Li, G. Stable and efficient organo-metal halide hybrid perovskite solar cells via π-conjugated lewis base polymer induced trap passivation and charge extraction. Adv. Mater. 2018, 30, 1706126.

[42]

Webb, T.; Liu, X. P.; Westbrook, R. J. E.; Kern, S.; Sajjad, M. T.; Jenatsch, S.; Jayawardena, K. D. G. I.; Perera, W. H. K.; Marko, I. P.; Sathasivam, S. et al. A multifaceted ferrocene interlayer for highly stable and efficient lithium doped spiro-OMeTAD-based perovskite solar cells. Adv. Energy Mater. 2022, 12, 2200666.

Nano Research
Pages 1500-1507
Cite this article:
Jin Y, Feng H, Fang Z, et al. Stabilizing semi-transparent perovskite solar cells with a polymer composite hole transport layer. Nano Research, 2024, 17(3): 1500-1507. https://doi.org/10.1007/s12274-023-5975-5
Topics:

1631

Views

4

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 18 May 2023
Revised: 28 June 2023
Accepted: 30 June 2023
Published: 22 August 2023
© Tsinghua University Press 2023
Return