Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Photothermal therapy (PTT) has been widely used in the treatment of tumors, but its efficacy is greatly limited by the inability of precise drug delivery and the increase of heat shock proteins (HSPs) caused by high temperature. This article describes a therapeutic strategy to enhance PTT with starvation therapy in conjunction with ferroptosis mechanism. A nanoparticle platform ZIF-8@GA was constructed by wrapping together glucose oxidase (GOX) and gold nanospheres (AuNPs) loaded with dihydroartemisinin (DHA) with zeolitic imidazolate framework-8 (ZIF-8). This platform can take advantage of the micro-environment of osteosarcoma (OS) cells, featuring low pH and high reactive oxygen species (ROS), for precision drug delivery. GOX can effectively catalyze glucose to produce gluconic acid and H2O2, and DHA can also induce ROS production in OS cells. ROS produced by GOX and DHA can further generate lipid peroxidation (LPO) and lead to ferroptosis of OS cells. At the same time, ROS and LPO produced can inhibit the expression of HSPs, thereby increasing the therapeutic effect of PTT. In vitro experiments show that the nanoparticles are pH and ROS responsive. 1 μg/mL GOX combined with 0.2 μg/mL DHA promotes ferroptosis of OS cells, and increases the killing effect of near-infrared (NIR) on OS cells. Further in vivo experiments showed that the nano drug-delivery platform combined with PTT can effectively inhibit the growth of OS cells. Meanwhile, this study provides a new idea for the treatment of OS with biomaterials combined with various treatment methods.
Ritter, J.; Bielack, S. S. Osteosarcoma. Ann. Oncol. 2010, 21, VII320–VII325.
Stiller, C. A.; Craft, A. W.; Corazziari, I.; The EUROCARE Working Group. Survival of children with bone sarcoma in Europe since 1978: Results from the EUROCARE study. Eur. J. Cancer 2001, 37, 760–766.
Bielack, S. S.; Kempf-Bielack, B.; Delling, G.; Exner, G. U.; Flege, S.; Helmke, K.; Kotz, R.; Salzer-Kuntschik, M.; Werner, M.; Winkelmann, W. et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: An analysis of 1, 702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J. Clin. Oncol. 2002, 20, 776–790.
Kager, L.; Zoubek, A.; Pötschger, U.; Kastner, U.; Flege, S.; Kempf-Bielack, B.; Branscheid, D.; Kotz, R.; Salzer-Kuntschik, M.; Winkelmann, W. et al. Primary metastatic osteosarcoma: Presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J. Clin. Oncol. 2003, 21, 2011–2018.
Kim, H.; Chung, K.; Lee, S.; Kim, D. H.; Lee, H. Near-infrared light-responsive nanomaterials for cancer theranostics. WIREs Nanomed. Nanobiotechnol. 2016, 8, 23–45.
Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.
Tian, Q. W.; Hu, J. Q.; Zhu, Y. H.; Zou, R. J.; Chen, Z. G.; Yang, S. P.; Li, R. W.; Su, Q. Q.; Han, Y.; Liu, X. G. Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy. J. Am. Chem. Soc. 2013, 135, 8571–8577.
Hu, K.; Xie, L.; Zhang, Y. D.; Hanyu, M.; Yang, Z. M.; Nagatsu, K.; Suzuki, H.; Ouyang, J.; Ji, X. Y.; Wei, J. J. et al. Marriage of black phosphorus and Cu2+ as effective photothermal agents for PET-guided combination cancer therapy. Nat. Commun. 2020, 11, 2778.
Jiang, Z. Q.; Yuan, B.; Wang, Y. J.; Wei, Z. N.; Sun, S.; Akakuru, O. U.; Li, Y.; Li, J.; Wu, A. G. Near-infrared heptamethine cyanine dye-based nanoscale coordination polymers with intrinsic nucleus-targeting for low temperature photothermal therapy. Nano Today 2020, 34, 100910.
Ying, W. W.; Zhang, Y.; Gao, W.; Cai, X. J.; Wang, G.; Wu, X. F.; Chen, L.; Meng, Z. Y.; Zheng, Y. Y.; Hu, B. et al. Hollow magnetic nanocatalysts drive starvation-chemodynamic-hyperthermia synergistic therapy for tumor. ACS Nano 2020, 14, 9662–9674.
Raza, M.; Chakraborty, S.; Choudhury, M.; Ghosh, P. C.; Nag, A. Cellular iron homeostasis and therapeutic implications of iron chelators in cancer. Curr. Pharm. Biotechnol. 2014, 15, 1125–1140.
Andrews, N. C. Iron homeostasis: Insights from genetics and animal models. Nat. Rev. Genet. 2000, 1, 208–217.
Basuli, D.; Tesfay, L.; Deng, Z.; Paul, B.; Yamamoto, Y.; Ning, G.; Xian, W.; Mckeon, F.; Lynch, M.; Crum, C. P. et al. Iron addiction: A novel therapeutic target in ovarian cancer. Oncogene 2017, 36, 4089–4099.
Dixon, S. J.; Lemberg, K. M.; Lamprecht, M. R.; Skouta, R.; Zaitsev, E. M.; Gleason, C. E.; Patel, D. N.; Bauer, A. J.; Cantley, A. M.; Yang, W. S. et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072.
Yang, W. S.; Stockwell, B. R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 2008, 15, 234–245.
Friedmann Angeli, J. P.; Schneider, M.; Proneth, B.; Tyurina, Y. Y.; Tyurin, V. A.; Hammond, V. J.; Herbach, N.; Aichler, M.; Walch, A.; Eggenhofer, E. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 2014, 16, 1180–1191.
He, Q.; Shi, J. X.; Shen, X. L.; An, J.; Sun, H.; Wang, L.; Hu, Y. J.; Sun, Q.; Fu, L. C.; Sheikh, M. S. et al. Dihydroartemisinin upregulates death receptor 5 expression and cooperates with TRAIL to induce apoptosis in human prostate cancer cells. Cancer Biol. Ther. 2010, 9, 819–824.
Fasano, E.; Serini, S.; Piccioni, E.; Toesca, A.; Monego, G.; Cittadini, A. R.; Ranelletti, F. O.; Calviello, G. DHA induces apoptosis by altering the expression and cellular location of GRP78 in colon cancer cell lines. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2012, 1822, 1762–1772.
Han, N.; Li, L. G.; Peng, X. C.; Ma, Q. L.; Yang, Z. Y.; Wang, X. Y.; Li, J.; Li, Q. R.; Yu, T. T.; Xu, H. Z. et al. Ferroptosis triggered by dihydroartemisinin facilitates chlorin e6 induced photodynamic therapy against lung cancerthrough inhibiting GPX4 and enhancing ROS. Eur. J. Pharmacol. 2022, 919, 174797.
Bankar, S. B.; Bule, M. V.; Singhal, R. S.; Ananthanarayan, L. Glucose oxidase-An overview. Biotechnol. Adv. 2009, 27, 489–501.
Dinda, S.; Sarkar, S.; Das, P. K. Glucose oxidase mediated targeted cancer-starving therapy by biotinylated self-assembled vesicles. Chem. Commun. 2018, 54, 9929–9932.
Wang, C.; Ye, Y. Q.; Hochu, G. M.; Sadeghifar, H.; Gu, Z. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 2016, 16, 2334–2340.
Li, Z. F.; Li, M.; Tan, B.; Du, N.; Zhang, Q.; Li, C. W.; Zhang, Y. B.; Li, J. W.; Li, J. Y. Green rust (GR) and glucose oxidase (GOX) based Fenton-like reaction: Capacity of sustainable release, promoted conversion of glucose through GOX-iron and pH self-adjustment. Environ. Res. 2022, 208, 112656–112666.
Okkeh, M.; Bloise, N.; Restivo, E.; De Vita, L.; Pallavicini, P.; Visai, L. Gold nanoparticles: Can they Be the next magic bullet for multidrug-resistant bacteria. . Nanomaterials 2021, 11, 312.
Singh, P.; Pandit, S.; Mokkapati, V.; Mokkapati, V. R. S. S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. 2018, 19, 1979.
Comenge, J.; Puntes, V. F. Stabilizing gold nanoparticle bioconjugates in physiological conditions by PEGylation. In Methods in Molecular Biology 2013, 1025, 281–289.
Sava Gallis, D. F.; Butler, K. S.; Agola, J. O.; Pearce, C. J.; Mcbride, A. A. Antibacterial countermeasures via metal-organic framework-supported sustained therapeutic release. ACS Appl. Mater. Interfaces 2019, 11, 7782–7791.
Peng, S. J.; Liu, J. S.; Qin, Y.; Wang, H.; Cao, B. L.; Lu, L. G.; Yu, X. R. Metal-organic framework encapsulating hemoglobin as a high-stable and long-circulating oxygen carriers to treat hemorrhagic shock. ACS Appl. Mater. Interfaces 2019, 11, 35604–35612.
Lyu, F. J.; Zhang, Y. F.; Zare, R. N.; Ge, J.; Liu, Z. One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities. Nano Lett. 2014, 14, 5761–5765.
Zheng, H. Q.; Zhang, Y. N.; Liu, L. F.; Wan, W.; Guo, P.; Nyström, A. M.; Zou, X. D. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 2016, 138, 962–968.
Li, F. L.; Chen, T.; Wang, F.; Chen, J. F.; Zhang, Y. Y.; Song, D. T.; Li, N.; Lin, X. H.; Lin, L. S.; Zhuang, J. Y. Enhanced cancer starvation therapy enabled by an autophagy inhibitors-encapsulated biomimetic ZIF-8 nanodrug: Disrupting and harnessing dual pro-survival autophagic responses. ACS Appl. Mater. Interfaces 2022, 14, 21860–21871.
Cheng, H.; Jiang, X. Y.; Zheng, R. R.; Zuo, S. J.; Zhao, L. P.; Fan, G. L.; Xie, B. R.; Yu, X. Y.; Li, S. Y.; Zhang, X. Z. A biomimetic cascade nanoreactor for tumor targeted starvation therapy-amplified chemotherapy. Biomaterials 2019, 195, 75–85.
Yang, J. C.; Chen, Y.; Li, Y. H.; Yin, X. B. Magnetic resonance imaging-guided multi-drug chemotherapy and photothermal synergistic therapy with pH and NIR-stimulation release. ACS Appl. Mater. Interfaces 2017, 9, 22278–22288.
Zou, B. H.; Xiong, Z. S.; He, L. Z.; Chen, T. F. Reversing breast cancer bone metastasis by metal organic framework-capped nanotherapeutics via suppressing osteoclastogenesis. Biomaterials 2022, 285, 121549.
Yang, W. S.; Stockwell, B. R. Ferroptosis: Death by lipid peroxidation. Trends Cell Biol. 2016, 26, 165–176.
Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and function. Cell Death Differ. 2016, 23, 369–379.
Liu, J.; Kang, R.; Tang, D. L. Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 2022, 289, 7038–7050.
Weinhouse, S. The Warburg hypothesis fifty years later. Z. Krebsforsch. Klin. Onkol. Cancer Res. Clin. Oncol. 1976, 87, 115–126.