Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
All-inorganic perovskites, adopting cesium (Cs+) cation to completely replace the organic component of A-sites of hybrid organic–inorganic halide perovskites, have attracted much attention owing to the excellent thermal stability. However, all-inorganic iodine-based perovskites generally exhibit poor phase stability in ambient conditions. Herein, we propose an efficient strategy to introduce antimony (Sb3+) into the crystalline lattices of CsPbI2Br perovskite, which can effectively regulate the growth of perovskite crystals to obtain a more stable perovskite phase. Due to the much smaller ionic radius and lower electronegativity of trivalent Sb3+ than those of Pb2+, the Sb3+ doping can decrease surface defects and suppress charge recombination, resulting in longer carrier lifetime and negligible hysteresis. As a result, the all-inorganic perovskite solar cells (PSCs) based on 0.25% Sb3+ doped CsPbI2Br light absorber and screen-printable nanocarbon counter electrode achieved a power conversion efficiency of 11.06%, which is 16% higher than that of the control devices without Sb3+ doping. Moreover, the Sb3+ doped all-inorganic PSCs also exhibited greatly improved endurance against heat and moisture. Due to the use of low-cost and easy-to-process nanocarbon counter electrodes, the manufacturing process of the all-inorganic PSCs is very convenient and highly repeatable, and the manufacturing cost can be greatly reduced. This work offers a promising approach to constructing high-stability all-inorganic PSCs by introducing appropriate lattice doping.
Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.
Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.
Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.
Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948.
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.
Park, J.; Kim, J.; Yun, H. S.; Paik, M. J.; Noh, E.; Mun, H. J.; Kim, M. G.; Shin, T. J.; Seok, S. I. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023, 616, 724–730.
Kim, N. K.; Min, Y. H.; Noh, S.; Cho, E.; Jeong, G.; Joo, M.; Ahn, S. W.; Lee, J. S.; Kim, S.; Ihm, K. et al. Investigation of thermally induced degradation in CH3NH3PbI3 perovskite solar cells using in-situ synchrotron radiation analysis. Sci. Rep. 2017, 7, 4645.
Yang, W. S.; Park, B. W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379.
Wang, Z.; Shi, Z. J.; Li, T. T.; Chen, Y. H.; Huang, W. Stability of perovskite solar cells: A prospective on the substitution of the A cation and X anion. Angew. Chem., Int. Ed. 2017, 56, 1190–1212.
Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T. Y.; Lee, Y. G.; Kim, G.; Shin, H. W.; Seok, S. I.; Lee, J.; Seo, J. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 2018, 3, 682–689.
Liang, J.; Wang, C. X.; Wang, Y. R.; Xu, Z. R.; Lu, Z. P.; Ma, Y.; Zhu, H. F.; Hu, Y.; Xiao, C. C.; Yi, X. et al. All-inorganic perovskite solar cells. J. Am. Chem. Soc. 2016, 138, 15829–15832.
Zhou, G.; Wu, J. H.; Zhao, Y. H.; Li, Y. M.; Shi, J. J.; Li, Y. S.; Wu, H. J.; Li, D. M.; Luo, Y. H.; Meng, Q. B. Application of cesium on the restriction of precursor crystallization for highly reproducible perovskite solar cells exceeding 20% efficiency. ACS Appl. Mater. Interfaces 2018, 10, 9503–9513.
Ding, L. M.; Cheng, Y. B.; Tang, J. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells exhibit improved efficiency and stability. Acta Phys. Chim. Sin. 2018, 34, 449–450.
Lin, J.; Lai, M. L.; Dou, L. T.; Kley, C. S.; Chen, H.; Peng, F.; Sun, J. L.; Lu, D.; Hawks, S. A.; Xie, C. L. et al. Thermochromic halide perovskite solar cells. Nat. Mater. 2018, 17, 261–267.
Nam, J. K.; Chun, D. H.; Rhee, R. J. K.; Lee, J. H.; Park, J. H. Methodologies toward efficient and stable cesium lead halide perovskite-based solar cells. Adv. Sci. 2018, 5, 1800509.
Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 2016, 7, 167–172.
Zhang, Y. L.; Luo, L.; Hua, J. C.; Wang, C.; Huang, F. Z.; Zhong, J.; Peng, Y.; Ku, Z. L.; Cheng, Y. B. Moisture assisted CsPbBr3 film growth for high-efficiency, all-inorganic solar cells prepared by a multiple sequential vacuum deposition method. Mater. Sci. Semicond. Process. 2019, 98, 39–43.
Frolova, L. A.; Anokhin, D. V.; Piryazev, A. A.; Luchkin, S. Y.; Dremova, N. N.; Stevenson, K. J.; Troshin, P. A. Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2. J. Phys. Chem. Lett. 2017, 8, 67–72.
Liang, J.; Han, X.; Yang, J. H.; Zhang, B. Y.; Fang, Q. Y.; Zhang, J.; Ai, Q.; Ogle, M. M.; Terlier, T.; Martí, A. A. et al. Defect-engineering-enabled high-efficiency all-inorganic perovskite solar cells. Adv. Mater. 2019, 31, 1903448.
Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Hörantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T. et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 2016, 6, 1502458.
Liang, J.; Liu, J.; Jin, Z. All-inorganic halide perovskites for optoelectronics: Progress and prospects. Sol. RRL 2017, 1, 1700086.
Liu, C.; Li, W. Z.; Zhang, C. L.; Ma, Y. P.; Fan, J. D.; Mai, Y. H. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J. Am. Chem. Soc. 2018, 140, 3825–3828.
Sun, H. R.; Zhang, J.; Gan, X. L.; Yu, L. T.; Yuan, H. B.; Shang, M. H.; Lu, C. J.; Hou, D. G.; Hu, Z. Y.; Zhu, Y. J. et al. Pb-reduced CsPb0.9Zn0.1I2Br thin films for efficient perovskite solar cells. Adv. Energy Mater. 2019, 9, 1900896.
Lau, C. F. J.; Zhang, M.; Deng, X. F.; Zheng, J. H.; Bing, J. M.; Ma, Q. S.; Kim, J.; Hu, L.; Green, M. A.; Huang, S. J. et al. Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells. ACS Energy Lett. 2017, 2, 2319–2325.
Liang, J.; Liu, Z. H.; Qiu, L. B.; Hawash, Z.; Meng, L. Q.; Wu, Z. F.; Jiang, Y.; Ono, L. K.; Qi, Y. B. Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes. Adv. Energy Mater. 2018, 8, 1800504.
Liu, C.; Li, W. Z.; Li, H. Y.; Wang, H. M.; Zhang, C. L.; Yang, Y. G.; Gao, X. Y.; Xue, Q. F.; Yip, H. L.; Fan, J. D. et al. Structurally reconstructed CsPbI2Br perovskite for highly stable and square-centimeter all-inorganic perovskite solar cells. Adv. Energy Mater. 2019, 9, 1803572.
Yuan, H. W.; Zhao, Y. Y.; Duan, J. L.; Wang, Y. D.; Yang, X. Y.; Tang, Q. W. All-inorganic CsPbBr3 perovskite solar cell with 10.26% efficiency by spectra engineering. J. Mater. Chem. A 2018, 6, 24324–24329.
Etgar, L.; Gao, P.; Xue, Z. S.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396–17399.
Mei, A. Y.; Li, X.; Liu, L. F.; Ku, Z. L.; Liu, T. F.; Rong, Y. G.; Xu, M.; Hu, M.; Chen, J. Z.; Yang, Y. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295–298.
Christodoulou, S.; Di Stasio, F.; Pradhan, S.; Stavrinadis, A.; Konstantatos, G. High-open-circuit-voltage solar cells based on bright mixed-halide CsPbBrI2 perovskite nanocrystals synthesized under ambient air conditions. J. Phys. Chem. C 2018, 122, 7621–7626.
Kim, M.; Kim, G. H.; Oh, K. S.; Jo, Y.; Yoon, H.; Kim, K. H.; Lee, H.; Kim, J. Y.; Kim, D. S. High-temperature-short-time annealing process for high-performance large-area perovskite solar cells. ACS Nano 2017, 11, 6057–6064.
Chai, W. M.; Zhu, W. D.; Zhang, Z. Y.; Liu, D. W.; Ni, Y. F.; Song, Z. C.; Dong, P.; Chen, D. Z.; Zhang, J. C.; Zhang, C. F. et al. CsPbBr3 seeds improve crystallization and energy level alignment for highly efficient CsPbI3 perovskite solar cells. Chem. Eng. J. 2023, 452, 139292.
Lau, C. F. J.; Deng, X. F.; Zheng, J. H.; Kim, J.; Zhang, Z. L.; Zhang, M.; Bing, J. M.; Wilkinson, B.; Hu, L.; Patterson, R. et al. Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency. J. Mater. Chem. A 2018, 6, 5580–5586.
Chung, I.; Lee, B.; He, J. Q.; Chang, R. P. H.; Kanatzidis, M. G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 2012, 485, 486–489.
Xiang, S. S.; Li, W. P.; Wei, Y.; Liu, J. M.; Liu, H. C.; Zhu, L. Q.; Chen, H. N. The synergistic effect of non-stoichiometry and Sb-doping on air-stable alpha-CsPbI3 for efficient carbon-based perovskite solar cells. Nanoscale 2018, 10, 9996–10004.
Brandt, R. E.; Stevanović, V.; Ginley, D. S.; Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: Beyond hybrid lead halide perovskites. MRS Commun. 2015, 5, 265–275.
Xia, Y. R.; Zhao, C.; Zhao, P. Y.; Mao, L. Y.; Ding, Y. C.; Hong, D. C.; Tian, Y. X.; Yan, W. S.; Jin, Z. Pseudohalide substitution and potassium doping in FA0.98K0.02Pb(SCN)2I for high-stability hole-conductor-free perovskite solar cells. J. Power Sources 2021, 494, 229781.
Zhu, M. F.; Xia, Y. R.; Qin, L. N.; Zhang, K. Q.; Liang, J. C.; Zhao, C.; Hong, D. C.; Jiang, M. H.; Song, X. M.; Wei, J. et al. Reducing surficial and interfacial defects by thiocyanate ionic liquid additive and ammonium formate passivator for efficient and stable perovskite solar cells. Nano Res. 2023, 16, 6849–6858.
Li, Z.; Yang, M. J.; Park, J. S.; Wei, S. H.; Berry, J. J.; Zhu, K. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 2016, 28, 284–292.
Xia, Y. R.; Zhu, M. F.; Qin, L. N.; Zhao, C.; Hong, D. C.; Tian, Y. X.; Yan, W. S.; Jin, Z. Organic–inorganic hybrid quasi-2D perovskites incorporated with fluorinated additives for efficient and stable four-terminal tandem solar cells. Energy Mater. 2023, 3, 300004.
Lee, J. W.; Kim, S. G.; Bae, S. H.; Lee, D. K.; Lin, O.; Yang, Y.; Park, N. G. The interplay between trap density and hysteresis in planar heterojunction perovskite solar cells. Nano. Lett. 2017, 17, 4270–4276.
Ma, J. J.; Yang, G.; Qin, M. C.; Zheng, X. L.; Lei, H. W.; Chen, C.; Chen, Z. L.; Guo, Y. X.; Han, H. W.; Zhao, X. Z. et al. MgO nanoparticle modified anode for highly efficient SnO2-based planar perovskite solar cells. Adv. Sci. 2017, 4, 1700031.
Yang, F.; Hirotani, D.; Kapil, G.; Kamarudin, M. A.; Ng, C. H.; Zhang, Y. H.; Shen, Q.; Hayase, S. All-inorganic CsPb1−xGexI2Br perovskite with enhanced phase stability and photovoltaic performance. Angew. Chem., Int. Ed. 2018, 57, 12745–12749.
Guo, Z. L.; Zhao, S.; Liu, A. M.; Kamata, Y.; Teo, S.; Yang, S. Z.; Xu, Z. H.; Hayase, S.; Ma, T. L. Niobium incorporation into CsPbI2Br for stable and efficient all-inorganic perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 19994–20003.