AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Insight into the structural transformation of tetraphenylethylene acids at liquid–solid interface induced by linear amino-functionalized triazine derivatives and annealing treatment

Ting Meng1,2,5,§Xuan Peng1,3,§Xunwen Xiao5( )Ke Deng1( )Yu-Wu Zhong4( )Qingdao Zeng1,2( )
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
School of Science, Nanchang Institute of Technology, Nanchang 330099, China
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
College of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China

§ Ting Meng and Xuan Peng contributed equally to this work.

Show Author Information

Graphical Abstract

In this work, three zcy series compounds with different conjugate skeletons were introduced to regulate the tetraphenylene (TPE) derivatives self-assembly at the liquid/solid interface. Moreover, temperature effect was further explored for the co-assembly.

Abstract

The interaction between organic photoelectric molecules leads to the formation of a certain aggregation structure, which plays a pivotal role in the charge transport at the intermolecular interface. In view of this, we investigated the mechanism and law of intermolecular interaction by detecting the self-assembled behaviors between organic photoelectric molecules at the interface by scanning tunneling microscopy (STM). In this work, the structural transformations of tetraphenylethylene acids (H4ETTCs) on graphite surface induced by temperature and triazine derivatives (zcy-19, zcy-27, and zcy-38 molecules) were studied by STM technology and density functional theory (DFT) calculations. At room temperature, zcy-19 and H4ETTC molecules formed a small range of ordered co-assembled nanostructure, while for zcy-27 or zcy-38 molecules, no co-assembled nanostructures were observed and only their own self-assembled structures existed on graphite surface, individually. In the thermal annealing trials, the original co-assembled H4ETTC/zcy-19 structure disappeared, and only zcy-19 and H4ETTC self-assembled in separate domains. Nevertheless, new well-ordered H4ETTC/zcy-27 or H4ETTC/zcy-38 co-assembled structures appeared at different annealing temperatures, respectively. Combined with DFT calculations, we further analyzed the mechanism of such structural transformations by triazine derivatives and temperature. Results reveal that triazine derivatives could interact with H4ETTC by N–H···O and O–H···N hydrogen bondings, and whether temperature or zcy series compounds could achieve successful regulation of H4ETTC assembly behavior is closely associated with the conjugated skeleton length of zcy series compounds.

Electronic Supplementary Material

Download File(s)
12274_2023_5984_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Goronzy, D. P.; Ebrahimi, M.; Rosei, F.; Arramel; Fang, Y.; De Feyter, S.; Tait, S. L.; Wang, C.; Beton, P. H.; Wee, A. T. S. et al. Supramolecular assemblies on surfaces: Nanopatterning, functionality, and reactivity. ACS Nano 2018, 12, 7445–7481.

[2]

Di Maria, F.; Olivelli, P.; Gazzano, M.; Zanelli, A.; Biasiucci, M.; Gigli, G.; Gentili, D.; D’Angelo, P.; Cavallini, M.; Barbarella, G. A successful chemical strategy to induce oligothiophene self-assembly into fibers with tunable shape and function. J. Am. Chem. Soc. 2011, 133, 8654–8661.

[3]

Fang, Y.; Ivasenko, O.; Sanz-Matias, A.; Mali, K. S.; Tahara, K.; Tobe, Y.; De Feyter, S. Spontaneous and scanning-assisted desorption–adsorption dynamics in porous supramolecular networks at the solution–solid interface. Nanoscale 2023, 15, 4301–4308.

[4]

Mali, K. S.; Adisoejoso, J.; Ghijsens, E.; De Cat, I.; De Feyter, S. Exploring the complexity of supramolecular interactions for patterning at the liquid–solid interface. Acc. Chem. Res. 2012, 45, 1309–1320.

[5]

Tan, S. C.; Shi, H. Y.; Du, X.; Wang, K. P.; Xu, H. J.; Wan, J. H.; Deng, K.; Zeng, Q. D.; Liu, Y. H. Electric field controlled superlubricity of fullerene-based host–guest assembly. Nano Res. 2023, 16, 583–588.

[6]

Kudernac, T.; Lei, S. B.; Elemans, J. A. A. W.; De Feyter, S. Two-dimensional supramolecular self-assembly: Nanoporous networks on surfaces. Chem. Soc. Rev. 2009, 38, 402–421.

[7]

Shang, L.; Kang, F. M.; Gao, W. Z.; Zhou, Z.; Xu, W. On-surface synthesis of sp-carbon nanostructures. Nanomaterials 2022, 12, 137.

[8]

Verstraete, L.; De Feyter, S. 2D self-assembled molecular networks and on-surface reactivity under nanoscale lateral confinement. Chem. Soc. Rev. 2021, 50, 5884–5897.

[9]

Mali, K. S.; Pearce, N.; De Feyter, S.; Champness, N. R. Frontiers of supramolecular chemistry at solid surfaces. Chem. Soc. Rev. 2017, 46, 2520–2542.

[10]

Omokawa, R.; Kawasaki, R.; Sugikawa, K.; Nishimura, T.; Nakaya, T.; Ikeda, A. Preparation of aqueous solutions with information on solids (ASIS) of a mechanochromic luminescent tetraphenylethylene derivative by complexation with polysaccharides. ACS Appl. Polym. Mater. 2021, 3, 3708–3713.

[11]

Wang, Y. J.; Nie, J. Y.; Fang, W.; Yang, L.; Hu, Q. L.; Wang, Z. K.; Sun, J. Z.; Tang, B. Z. Sugar-based aggregation-induced emission luminogens: Design, structures, and applications. Chem. Rev. 2020, 120, 4534–4577.

[12]

Sun, Y.; Chen, C. Y.; Liu, J. B.; Stang, P. J. Recent developments in the construction and applications of platinum-based metallacycles and metallacages via coordination. Chem. Soc. Rev. 2020, 49, 3889–3919.

[13]

Bian, L. F.; Liang, Y. M.; Liu, Z. C. Tetraphenylethylene-incorporated macrocycles and nanocages: Construction and applications. ACS Appl. Nano Mater. 2022, 5, 13940–13958.

[14]

Zhu, Z. Y.; Qu, H.; Chen, Y. R.; Zhang, C. Y.; Li, R. H.; Zhao, Y.; Zhou, Y.; Chen, Z. X.; Liu, J. Y.; Xiao, Z. Y. et al. Single-molecule conductance variations of up to four orders of magnitude via contacting electrodes with different anchoring sites. J. Mater. Chem. C 2021, 9, 16192–16198.

[15]

Zhang, J.; Xue, F.; Wang, Z. G. Aie-active fluorescent porous polymers for recognizable detection of imidacloprid and structure–property relationship. Chem. Mater. 2022, 34, 10701–10710.

[16]

Zou, H. Q.; Liu, L. Q.; Zhang, S. Y.; Miao, X. R.; Ying, L.; Deng, W. L.; Cao, Y. Different stepwise growth mechanism of aie-active tetraphenylethylene-functionalized metal–organic frameworks on Au (111) and Cu (111) surfaces. J. Phys. Chem. Lett. 2023, 14, 489–498.

[17]

Peng, X.; Cheng, L. X.; Zhu, X. Y.; Geng, Y. F.; Zhao, F. Y.; Hu, K. D.; Guo, X.; Deng, K.; Zeng, Q. D. Pyridine-induced interfacial structural transformation of tetraphenylethylene derivatives investigated by scanning tunneling microscopy. Nano Res. 2018, 11, 5823–5834.

[18]

Peng, X.; Geng, Y. F.; Zhang, M.; Cheng, F. L.; Cheng, L. X.; Deng, K.; Zeng, Q. D. Guest selectivity in the supramolecular host networks fabricated by van der Waals force and hydrogen bond. Nano Res. 2019, 12, 537–542.

[19]

Lei, P.; Hou, J. F.; Xiao, Y. C.; Zhao, F. Y.; Li, X. K.; Deng, K.; Zeng, Q. D. On-surface self-assembled structural transformation induced by schiff base reaction and hydrogen bonds. Langmuir 2021, 37, 3662–3671.

[20]

Xu, H. B.; Wang, H. H.; Zhou, S. H.; Xiao, L. L.; Yan, Y.; Yuan, Q. H. A protocol of self-assembled monolayers of fluorescent block molecules for trace Zn(II) sensing: Structures and mechanisms. RSC Adv. 2015, 5, 106061–106067.

[21]

Wang, W. H.; Wang, S. Y.; Hong, Y. N.; Tang, B. Z.; Lin, N. Selective supramolecular assembly of multifunctional ligands on a Cu (111) surface: Metallacycles, propeller trimers, and linear chains. Chem. Commun. 2011, 47, 10073–10075.

[22]

Li, J. Q.; Luo, W. D.; Zhang, S. Q.; Ma, C. Y.; Xiao, X. W.; Duan, W. B.; Zeng, Q. D. The effect of multiple pairs of meta-dicarboxyl groups on molecular self-assembly and the selective adsorption of coronene by hydrogen bonding and van der Waals forces. Nano Res. 2022, 15, 1691–1697.

[23]

Mao, S. S.; Lin, Y. H.; Li, X. Y.; Wang, H. Highly luminescent metal–organic frameworks based on binary chromophoric ligands derived from tetraphenylethylene. Cryst. Growth Des. 2022, 22, 5791–5795.

[24]

Meng, T.; Lei, P.; Zhang, Y. F.; Deng, K.; Xiao, X. W.; Zeng, Q. D. Coronene and bipyridine derivatives inducing diversified structural transitions of carboxylic acids at the liquid/solid interface. Chin. J. Chem. 2022, 40, 2727–2733.

[25]

Ma, L.; Ma, C. Y.; Zhang, S. Q.; Li, J. Q.; Gan, L. L.; Deng, K.; Duan, W. B.; Li, X. K.; Zeng, Q. D. Regulation of the assembled structure of a flexible porphyrin derivative containing tetra isophthalic acids by coronene or different pyridines. Langmuir 2022, 38, 4434–4441.

[26]

Lei, P.; Luo, W. D.; Tu, B.; Xiao, X. W.; Fang, Q. J.; Wang, C.; Zeng, Q. D. Minor adjustments in the chemical structures of pyridine derivatives induced different co-assemblies by O–H···N hydrogen bonds. Chem. Commun. 2022, 58, 9914–9917.

[27]

Lei, P.; Zhao, L.; He, L.; Zhao, F. Y.; Xiao, X. W.; Tu, B.; Zeng, Q. D. Temperature induced supramolecular structural transition and as a host cavity to capture the guest molecules. Appl. Surf. Sci. 2021, 550, 149352.

[28]

Blunt, M. O.; Adisoejoso, J.; Tahara, K.; Katayama, K.; Van der Auweraer, M.; Tobe, Y.; De Feyter, S. Temperature-induced structural phase transitions in a two-dimensional self-assembled network. J. Am. Chem. Soc. 2013, 135, 12068–12075.

[29]

Wang, L. M.; Yue, J. Y.; Zheng, Q. Y.; Wang, D. Temperature-directed hierarchical surface supramolecular assembly. J. Phys. Chem. C 2019, 123, 13775–13781.

[30]

Mahmood, A.; Saeed, M.; Chan, Y.; Saleemi, A. S.; Guo, J. T.; Lee, S. L. Synergic effect: Temperature-assisted electric-field-induced supramolecular phase transitions at the liquid/solid interface. Langmuir 2019, 35, 8031–8037.

[31]

Cheng, L. X.; Li, Y. B.; Zhang, C. Y.; Gong, Z. L.; Fang, Q. J.; Zhong, Y. W.; Tu, B.; Zeng, Q. D.; Wang, C. Temperature-triggered chiral self-assembly of achiral molecules at the liquid–solid interface. ACS Appl. Mater. Interfaces 2016, 8, 32004–32010.

[32]

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

[33]

Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.

[34]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[35]

Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.

[36]

Becke, A. D. A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys. 1988, 88, 2547–2553.

[37]

Cañas-Ventura, M. E.; Aït-Mansour, K.; Ruffieux, P.; Rieger, R.; Müllen, K.; Brune, H.; Fasel, R. Complex interplay and hierarchy of interactions in two-dimensional supramolecular assemblies. ACS Nano 2011, 5, 457–469.

[38]

Ruiz-Osés, M.; Kampen, T.; González-Lakunza, N.; Silanes, I.; Schmidt-Weber, P. M.; Gourdon, A.; Arnau, A.; Horn, K.; Ortega, J. E. Spectroscopic fingerprints of amine and imide functional groups in self-assembled monolayers. ChemPhysChem 2007, 8, 1722–1726.

Nano Research
Pages 13335-13342
Cite this article:
Meng T, Peng X, Xiao X, et al. Insight into the structural transformation of tetraphenylethylene acids at liquid–solid interface induced by linear amino-functionalized triazine derivatives and annealing treatment. Nano Research, 2023, 16(12): 13335-13342. https://doi.org/10.1007/s12274-023-5984-4
Topics:
Part of a topical collection:

849

Views

5

Crossref

5

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 26 April 2023
Revised: 17 June 2023
Accepted: 05 July 2023
Published: 25 August 2023
© Tsinghua University Press 2023
Return