AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent progress of in-situ characterization of LiNi1−xyCoxMnyO2 cathodes for lithium metal batteries: A mini review

Huanzhu Lv1Xiaoqi Zhu1Jun Mei2Yuanhua Xia3Bin Wang1( )
Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 611731, China
Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, China
Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP), Mianyang 621999, China
Show Author Information

Graphical Abstract

The prominent application of in-situ characterization in the mechanistic study of lithium metal batteries (LMBs) is highlighted in this minireview. Also, the opportunities and challenges for the future development of this field based on existing research results are presented as significant discussion points in this minireview.

Abstract

In the context of the gradual popularity of electric vehicles (EVs), the development of lithium battery systems with high energy density and power density is regarded as the foremost way to improve the range of EVs. LiNi1−xyCoxMnyO2 (NCM) cathodes have been the focus of researchers due to their high energy density, excellent power performance, and low-temperature resistance. However, the elaboration of the decay mechanism of NCM cathode based on lithium metal batteries (LMBs) is still being restricted to the primary level. In the past decades, the development and application of advanced in-situ characterization tools have facilitated researchers' understanding of the internal operation mechanism of batteries during charging and discharging. In this minireview, the latest progress of in-situ observation of the NCM cathode by X-ray diffraction (XRD), fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, atomic force microscopy (AFM), transmission electron microscope (TEM), optical microscope, and other characterization tools is summarized. The mechanisms of structural degradation, cathode-electrolyte interfaces (CEIs) composition, and dynamic changes of NCM, electrolyte breakdown, and gas production are elaborated. Finally, based on the existing research progress, the opportunities and challenges for future in-situ characterization technology in the study of the mechanism of LMBs are discussed in depth. Therefore, the purpose of this minireview is to summarize recent work that focuses on the outstanding application of in-situ characterization techniques in the mechanistic study of LMBs, and pointing the way to the future development of high energy density and power density LMBs systems.

References

[1]

Choi, S.; Wang, G. X. Advanced lithium-ion batteries for practical applications: Technology, development, and future perspectives. Adv. Mater. Technol. 2018, 3, 1700376.

[2]
Research and Markets. Positive electrode materials for Li-batteries global market insights 2021, analysis and forecast to 2026, by manufacturers, regions, technology, application, product type.https://www.researchandmarkets.com/reports/5392542/positive-electrode-materials-for-li-batteries#src-pos-1 (accessed Jun 15, 2021).
[3]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[4]
National Passenger Cars Association. December 2022 new energy vehicle triboelectric system insight report.https://www.car-metaverse.com/202301/291586457.html (accessed Mar 6, 2023)
[5]

Nguyen, V. H.; Kim, Y. H. Recent advances in cathode and anode materials for lithium ion batteries. Appl. Chem. Eng. 2018, 29, 635–644.

[6]

Feng, T.; Guo, W.; Li, Q.; Meng, Z. H.; Liang, W. C. Life cycle assessment of lithium nickel cobalt manganese oxide batteries and lithium iron phosphate batteries for electric vehicles in China. J. Energy Storage 2022, 52, 104767.

[7]

Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today. 2015, 18, 252–264.

[8]

Quan, J. W.; Zhao, S. Q.; Song, D. M.; Wang, T. Y.; He, W. Z.; Li, G. M. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies. Sci. Total Environ. 2022, 819, 153105.

[9]

Choi, K. H.; Liu, X. Y.; Ding, X. H.; Li, Q. Design strategies for development of nickel-rich ternary lithium-ion battery. Ionics 2020, 26, 1063–1080.

[10]

Song, L. B.; Du, J. L.; Xiao, Z. L.; Jiang, P.; Cao, Z.; Zhu, H. L. Research progress on the surface of high-nickel nickel-cobalt-manganese ternary cathode materials: A mini review. Front. Chem. 2020, 8, 761.

[11]

Xiao, Z. L.; Liu, P.; Song, L. B.; Cao, Z.; Du, J. L.; Zhou, C. F.; Jiang, P. The correlation between structure and thermal properties of nickel-rich ternary cathode materials: A review. Ionics 2021, 27, 3207–3217.

[12]

Zhang, J. H.; Jin, Y. H.; Liu, J. B.; Zhang, Q. Q.; Wang, H. Recent advances in understanding and relieving capacity decay of lithium ion batteries with layered ternary cathodes. Sustain. Energy Fuels 2021, 5, 5114–5138.

[13]
Geldasa, F. T.; Kebede, M. A.; Shura, M. W.; Hone, F. G. , mechanical failure, and thermal instability phenomena of high energy density Ni-rich NCM cathode materials for lithium-ion batteries: A review. RSC Adv. 2022, 12, 5891–5909.
[14]

Jung, C. H.; Shim, H.; Eum, D.; Hong, S. H. Challenges and recent progress in LiNixCoyMn1−xyO2 (NCM) cathodes for lithium ion batteries. J. Korean Ceram. Soc. 2021, 58, 1–27.

[15]

Yang Yuan, Hu Nai-Fang, Jin Yong-Cheng, Ma Jun, Cui Guang-Lei. Research advance of lithium-rich cathode materials in all-solid-state lithium batteries. Acta Phys. Sin. 2023, 72, 118801.

[16]

Lu, J.; Wu, T. P.; Amine, K. State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat. Energy 2017, 2, 17011.

[17]

Yang, M.; Bi, R. Y.; Wang, J. Y.; Yu, R. B.; Wang, D. Decoding lithium batteries through advanced in situ characterization techniques. Int. J. Miner. Metall. Mater. 2022, 29, 965–989.

[18]

Zhang, X.; Zhou, Q.; Lv, Z. L.; Zhai, F. F.; Li, Z. L.; Li, S. L.; Zhang, B. T.; Cui, G. L. Multi-scale characterization techniques for polymer-based solid-state lithium batteries. Macromol. Chem. Phys. 2023, 224, 2200351.

[19]

Zhang, X.; Liu G.; Zhou K.; Jiao T.; Zou Y.; Wu Q.; Chen X.; Yang Y.; Zheng J. Enhancing cycle life of nickel-rich LiNi0.9Co0.05Mn0.05O2 via a highly fluorinated electrolyte additive—pentafluoropyridine. Energy Mater. 2021, 1, 100005.

[20]

Li, W. D.; Asl, H. Y.; Xie, Q.; Manthiram, A. Collapse of LiNi1−xyCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries. J. Am. Chem. Soc. 2019, 141, 5097–5101.

[21]

Schweidler, S.; de Biasi, L.; Hartmann, P.; Brezesinski, T.; Janek, J. Kinetic limitations in cycled nickel-rich NCM cathodes and their effect on the phase transformation behavior. ACS Appl. Energy Mater. 2020, 3, 2821–2827.

[22]

Cosby, M. R.; Carignan, G. M.; Li, Z.; Efaw, C. M.; Dickerson, C. C.; Yin, L.; Ren, Y.; Li, B.; Dufek, E. J.; Khalifah, P. G. Operando synchrotron studies of inhomogeneity during anode-free plating of Li metal in pouch cell batteries. J. Electrochem. Soc. 2022, 169, 020571.

[23]

He, H.; Huang, C.; Luo, C. W.; Liu, J. J.; Chao, Z. S. Dynamic study of Li intercalation into graphite by in situ high energy synchrotron XRD. Electrochim. Acta. 2013, 92, 148–152.

[24]

Liu, J.; Ma, Y.; Roberts, M.; Gustafsson, T.; Edström, K.; Zhu, J. F. Highly efficient Ru/MnO2 nano-catalysts for Li-O2 batteries: Quantitative analysis of catalytic Li2O2 decomposition by operando synchrotron X-ray diffraction. J. Power Sources 2017, 352, 208–215.

[25]

Wang, X. J.; Chen, H. Y.; Yu, X. Q.; Wu, L. J.; Nam, K. W.; Bai, J. M.; Li, H.; Huang, X. J.; Yang, X. Q. A new in situ synchrotron X-ray diffraction technique to study the chemical delithiation of LiFePO4. Chem. Commun. 2011, 47, 7170–7172.

[26]

Hyun, H.; Jeong, K.; Hong, H.; Seo, S.; Koo, B.; Lee, D.; Choi, S.; Jo, S.; Jung, K.; Cho, H. H. et al. Suppressing high-current-induced phase separation in Ni-rich layered oxides by electrochemically manipulating dynamic lithium distribution. Adv. Mater. 2021, 33, 2105337.

[27]

Kuganathan, N.; Iyngaran, P.; Chroneos, A. Lithium diffusion in Li5FeO4. Sci. Rep. 2018, 8, 5832.

[28]

Park, S. B.; Park, C. K.; Hwang, J. T.; Cho, W. I.; Jang, H. Anisotropic lithium ion migration in LiFePO4. Met. Mater. Int. 2011, 17, 1017–1020.

[29]

Wang, C. Q.; Wang, R.; Huang, Z. Y.; Chu, M. H.; Ji, W. H.; Chen, Z. W.; Zhang, T. L.; Zhai, J. J.; Lu, H. L.; Deng, S. H. et al. Unveiling the migration behavior of lithium ions in NCM/graphite full cell via in operando neutron diffraction. Energy Storage Mater. 2022, 44, 1–9.

[30]
Baran, V.; Mühlbauer, M. J.; Schulz, M.; Pfanzelt, J.; Senyshyn, A. In operando studies of rotating prismatic Li-ion batteries using monochromatic wide-angle neutron diffraction. J. Energy Storage 2019, 24, 100772.
[31]

Jacas Biendicho, J.; Noréus, D.; Offer, C.; Svensson, G.; Smith, R. I.; Hull, S. New opportunities for air cathode batteries; In-situ neutron diffraction measurements. Front. Energy Res. 2018, 6, 69.

[32]

Liang, G. M.; Didier, C.; Guo, Z. P.; Pang, W. K.; Peterson, V. K. Understanding rechargeable battery function using in operando neutron powder diffraction. Adv. Mater. 2020, 32, 1904528.

[33]

Fang, S. Y.; Yan, M.; Hamers, R. J. Cell design and image analysis for in situ Raman mapping of inhomogeneous state-of-charge profiles in lithium-ion batteries. J. Power Sources. 2017, 352, 18–25.

[34]

Cui, C.; Yang, H.; Zeng, C.; Gui, S. W.; Liang, J. N.; Xiao, P.; Wang, S. H.; Huang, G. X.; Hu, M. T.; Zhai, T. Y. et al. Unlocking the in situ Li plating dynamics and evolution mediated by diverse metallic substrates in all-solid-state batteries. Sci. Adv. 2022, 8, eadd2000.

[35]

Yuan, Y. F.; Amine, K.; Lu, J.; Shahbazian-Yassar, R. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat. Commun. 2017, 8, 15806.

[36]

Yang, R. J.; Mei, L.; Fan, Y. Y.; Zhang, Q. Y.; Liao, H. G.; Yang, J.; Li, J.; Zeng, Z. Y. Fabrication of liquid cell for in situ transmission electron microscopy of electrochemical processes. Nat. Protoc. 2023, 18, 555–578.

[37]

Lu, P.; Yan, P. F.; Romero, E.; Spoerke, E. D.; Zhang, J. G.; Wang, C. M. Observation of electron-beam-induced phase evolution mimicking the effect of the charge–discharge cycle in Li-rich layered cathode materials used for Li ion batteries. Chem. Mater. 2015, 27, 1375–1380.

[38]

Chen, Y. X.; Chen, K. H.; Sanchez, A. J.; Kazyak, E.; Goel, V.; Gorlin, Y.; Christensen, J.; Thornton, K.; Dasgupta, N. P. Operando video microscopy of Li plating and re-intercalation on graphite anodes during fast charging. J. Mater. Chem. A 2021, 9, 23522–23536.

[39]

Agrawal, S.; Bai, P. Dynamic interplay between phase transformation instabilities and reaction heterogeneities in particulate intercalation electrodes. Cell Rep. Phys. Sci. 2022, 3, 100854.

[40]

Arise, I.; Miyahara, Y.; Miyazaki, K.; Abe, T. Functional role of aramid coated separator for dendrite suppression in lithium-ion batteries. J. Electrochem. Soc. 2022, 169, 010536.

[41]

Kondrakov, A. O.; Schmidt, A.; Xu, J.; Geßwein, H.; Mönig, R.; Hartmann, P.; Sommer, H.; Brezesinski, T.; Janek, J. Anisotropic lattice strain and mechanical degradation of high- and low-nickel NCM cathode materials for Li-ion batteries. J. Phys. Chem. C 2017, 121, 3286–3294.

[42]

Chen, M. J.; Ma, C.; Ding, Z. P.; Zhou, L. J.; Chen, L. B.; Gao, P.; Wei, W. F. Upgrading electrode/electrolyte interphases via polyamide-based quasi-solid electrolyte for long-life nickel-rich lithium metal batteries. ACS Energy Lett. 2021, 6, 1280–1289.

[43]

Fan, X. L.; Wang, C. S. High-voltage liquid electrolytes for Li batteries: Progress and perspectives. Chem. Soc. Rev. 2021, 50, 10486–10566.

[44]

Zhang, J. N.; Li, Q. H.; Wang, Y.; Zheng, J. Y.; Yu, X. Q.; Li, H. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater. 2018, 14, 1–7.

[45]

Zhang, Y. R.; Katayama, Y.; Tatara, R.; Giordano, L.; Yu, Y.; Fraggedakis, D.; Sun, J. G.; Maglia, F.; Jung, R.; Bazant, M. Z. et al. Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy. Energy Environ. Sci. 2020, 13, 183–199.

[46]

Chen, Y. Q.; He, Q.; Mo, Y.; Zhou, W.; Zhao, Y.; Piao, N.; Liu, C.; Xiao, P. T.; Liu, H.; Li, B. H. et al. Engineering an insoluble cathode electrolyte interphase enabling high performance NCM811//graphite pouch cell at 60 °C. Adv. Energy Mater. 2022, 12, 2201631.

[47]
Chen, D. C.; Mahmoud, M. A.; Wang, J. H.; Waller, G. H.; Zhao, B. T.; Qu, C.; El-Sayed, M. A.; Liu, M. L. Operando investigation into dynamic evolution of cathode–electrolyte interfaces in a Li-ion battery. Nano Lett. 2019, 19, 2037–2043.
[48]

Guo, H. J.; Sun, Y. P.; Zhao, Y.; Liu, G. X.; Song, Y. X.; Wan, J.; Jiang, K. C.; Guo, Y. G.; Sun, X. L.; Wen, R. Surface degradation of single-crystalline Ni-rich cathode and regulation mechanism by atomic layer deposition in solid-state lithium batteries. Angew. Chem., Int. Ed. 2022, 61, e202211626.

[49]
Zhang, Q. Y.; Ma, J. L.; Mei, L.; Liu, J.; Li, Z. Y.; Li, J.; Zeng, Z. Y. In situ TEM visualization of LiF nanosheet formation on the cathode-electrolyte interphase (CEI) in liquid-electrolyte lithium-ion batteries. Matter. 2022, 5, 1235–1250.
[50]

Leißing, M.; Horsthemke, F.; Wiemers-Meyer, S.; Winter, M.; Niehoff, P.; Nowak, S. The impact of the C-rate on gassing during formation of NMC622 II graphite lithium-ion battery cells. Batteries Supercaps 2021, 4, 1344–1350.

[51]

Zhang, X. F.; Li, L. F.; Xu, W. Analysis of gas production in overcharged lithium battery by X-ray computed tomography. J. Electrochem. Energy Convers. Storage 2021, 18, 021013.

[52]

Zou, K. Y.; He, K.; Lu, S. X. Venting composition and rate of large-format LiN0.8Co0.1Mn0.1O2 pouch power battery during thermal runaway. Int. J. Heat Mass Transfer. 2022, 195, 123133.

[53]

Wandt, J.; Freiberg, A. T. S.; Ogrodnik, A.; Gasteiger, H. A. Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Mater. Today 2018, 21, 825–833.

[54]

Laszczynski, N.; Solchenbach, S.; Gasteiger, H. A.; Lucht, B. L. Understanding electrolyte decomposition of graphite/NCM811 cells at elevated operating voltage. J. Electrochem. Soc. 2019, 166, A1853–A1859.

[55]

Rinkel, B. L. D.; Vivek, J. P.; Garcia-Araez, N.; Grey, C. P. Two electrolyte decomposition pathways at nickel-rich cathode surfaces in lithium-ion batteries. Energy Environ. Sci. 2022, 15, 3416–3438.

[56]

Fawey, M. H.; Chakravadhanula, V. S. K.; Reddy, M. A.; Rongeat, C.; Scherer, T.; Hahn, H.; Fichtner, M.; Kübel, C. In situ TEM studies of micron-sized all-solid-state fluoride ion batteries: Preparation, prospects, and challenges. Microsc. Res. Tech. 2016, 79, 615–624.

[57]

Lu, J. Y.; Ke, C. Z.; Gong, Z. L.; Li, D. P.; Ci, L. J.; Zhang, L.; Zhang, Q. B. Application of in-situ characterization techniques in all-solid-state lithium batteries. Acta Phys. Sin. 2021, 70, 198102.

[58]

Matsui, M.; Orikasa, Y.; Uchiyama, T.; Nishi, N.; Miyahara, Y.; Otoyama, M.; Tsuda, T. Electrochemical in situ/operando spectroscopy and microscopy part 2: Battery applications. Electrochemistry 2022, 90, 102010.

[59]

Wu, J.; Fenech, M.; Webster, R. F.; Tilley, R. D.; Sharma, N. Electron microscopy and its role in advanced lithium-ion battery research. Sustainable Energy Fuels 2019, 3, 1623–1646.

[60]

Wu, Z. B.; Kong Pang, W.; Chen, L. B.; Johannessen, B.; Guo, Z. P. In situ synchrotron X-ray absorption spectroscopy studies of anode materials for rechargeable batteries. Batteries Supercaps 2021, 4, 1547–1566.

[61]

Xia, M. T.; Liu, T. T.; Peng, N.; Zheng, R. T.; Cheng, X.; Zhu, H. J.; Yu, H. X.; Shui, M.; Shu, J. Lab-scale in situ X-ray diffraction technique for different battery systems: Designs, applications, and perspectives. Small Methods 2019, 3, 1900119.

[62]

Ding, Z. P.; Yang, C.; Zou, J.; Chen, S. L.; Qu, K.; Ma, X. M.; Zhang, J. M.; Lu, J.; Wei, W. F.; Gao, P. et al. Reaction mechanism and structural evolution of fluorographite cathodes in solid-state K/Na/Li batteries. Adv. Mater. 2021, 33, 2006118.

[63]

Leung, K.; Qi, Y.; Zavadil, K. R.; Jung, Y. S.; Dillon, A. C.; Cavanagh, A. S.; Lee, S. H.; George, S. M. Using atomic layer deposition to hinder solvent decomposition in lithium ion batteries: First-principles modeling and experimental studies. J. Am. Chem. Soc. 2011, 133, 14741–14754.

[64]

Maletti, S.; Janson, O.; Herzog-Arbeitman, A.; Martinez, I. G. G.; Buckan, R.; Fischer, J.; Senyshyn, A.; Missyul, A.; Etter, M.; Mikhailova, D. Operation mechanism in hybrid Mg-Li batteries with TiNb2O7 allowing stable high-rate cycling. ACS Appl. Mater. Interfaces 2021, 13, 6309–6321.

[65]

Sun, S. R.; Wang, Z. L.; Xia, D. G. Theoretical study of a new cathode material of Li-battery: Iron hydroxyl-phosphate. J. Phys. Chem. C 2010, 114, 587–592.

[66]

Yang, M. Y.; Kim, S.; Kim, K.; Cho, W.; Choi, J. W.; Nam, Y. S. Role of ordered Ni atoms in Li layers for Li-rich layered cathode materials. Adv. Funct. Mater. 2017, 27, 1700982.

[67]

Zhao, Y.; Bai, Y.; Liu, A.; Li, W.; An, M.; Bai, Y.; Chen, G. Polymer electrolyte with dual functional groups designed via theoretical calculation for all-solid-state lithium batteries. J. Power Sources 2020, 450, 227614.

[68]
Lin, Y. F.; Chen, J. E.; Zhang, H.; Wang, J. H. In-situ construction of high-mechanical-strength and fast-ion-conductivity interphase for anode-free Li battery. J. Energy Chem. 2023, 80, 207–214.
[69]

Mehdi, B. L.; Qian, J.; Nasybulin, E.; Park, C.; Welch, D. A.; Faller, R.; Mehta, H.; Henderson, W. A.; Xu, W.; Wang, C. M. et al. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett. 2015, 15, 2168–2173.

[70]

Vilá, R. A.; Boyle, D. T.; Dai, A. L.; Zhang, W. B.; Sayavong, P.; Ye, Y. S.; Yang, Y. F.; Dionne, J. A.; Cui, Y. LiH formation and its impact on Li batteries revealed by cryogenic electron microscopy. Sci. Adv. 2023, 9, eadf3609.

[71]
Yang, T. T.; Li, H.; Tang, Y. F.; Chen, J. Z.; Ye, H. J.; Wang, B. L.; Zhang, Y.; Du, C. C.; Yao, J. M.; Guo, B. Y. et al. In situ observation of cracking and self-healing of solid electrolyte interphases during lithium deposition. Sci. Bull. 2021, 66, 1754–1763.
[72]

Yang, Z. Z.; Zhu, Z. Y.; Ma, J.; Xiao, D. D.; Kui, X.; Yao, Y.; Yu, R. C.; Wei, X.; Gu, L.; Hu, Y. S. et al. Phase separation of Li2S/S at nanoscale during electrochemical lithiation of the solid-state lithium-sulfur battery using in situ TEM. Adv. Energy Mater. 2016, 6, 1600806.

[73]
Nandasiri, M. I.; Camacho-Forero, L. E.; Schwarz, A. M.; Shutthanandan, V.; Thevuthasan, S.; Balbuena, P. B.; Mueller, K. T.; Murugesan, V. In situ chemical imaging of solid–electrolyte interphase layer evolution in Li-S batteries. Chem. Mater. 2017, 29, 4728–4737.
[74]

Nayak, C.; Abharana, N.; Modak, B.; Halankar, K.; Jha, S. N.; Bhattacharyya, D. Insight into the charging–discharging of magnetite electrodes: In situ XAS and DFT study. Phys. Chem. Chem. Phys. 2021, 23, 6051–6061.

[75]

Otoyama, M.; Suyama, M.; Hotehama, C.; Kowada, H.; Takeda, Y.; Ito, K.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. Visualization and control of chemically induced crack formation in all-solid-state lithium-metal batteries with sulfide electrolyte. ACS Appl. Mater. Interfaces 2021, 13, 5000–5007.

[76]

Gauthier, M.; Nguyen, M. H.; Blondeau, L.; Foy, E.; Wong, A. Operando NMR characterization of a metal-air battery using a double-compartment cell design. Solid State Nucl. Magn. Reson. 2021, 113, 101731.

[77]

Tan, C.; Leach, A. S.; Heenan, T. M. M.; Parks, H.; Jervis, R.; Weker, J. N.; Brett, D. J. L.; Shearing, P. R. Nanoscale state-of-charge heterogeneities within polycrystalline nickel-rich layered oxide cathode materials. Cell Rep. Phys. Sci. 2021, 2, 100647.

[78]

Dini, D.; Cognigni, F.; Passeri, D.; Scaramuzzo, F. A.; Pasquali, M.; Rossi, M. Review—Multiscale characterization of Li-ion batteries through the combined use of atomic force microscopy and X-ray microscopy and considerations for a correlative analysis of the reviewed data. J. Electrochem. Soc. 2021, 168, 126522.

Nano Research
Pages 1384-1401
Cite this article:
Lv H, Zhu X, Mei J, et al. Recent progress of in-situ characterization of LiNi1−xyCoxMnyO2 cathodes for lithium metal batteries: A mini review. Nano Research, 2024, 17(3): 1384-1401. https://doi.org/10.1007/s12274-023-5986-2
Topics:

1051

Views

2

Crossref

5

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 26 May 2023
Revised: 03 July 2023
Accepted: 04 July 2023
Published: 25 August 2023
© Tsinghua University Press 2023
Return