AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enriching the surface oxygen as efficient anchoring site of highly dispersed Ru for enhanced hydrogenolysis activity

Hongfei Xiao1,2,3Jianghao Zhang1( )Chuo Du1,2Yanxia Zheng1Shuchao Ge1Jinhou Fang4Shuang Li3Changbin Zhang1,2,4( )
State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
University of Chinese Academy of Sciences, Beijing 100049, China
School of Chemical Engineering, Northwest University, Xi’an 710069, China
Weifang Research Institute of Materials and Technology for Eco-environmental Protection, Weifang 261300, China
Show Author Information

Graphical Abstract

The anchoring strength and sites for Ru on MnO were enhanced/enriched by increasing the concentration of the surface oxygen of MnO, leading to highly dispersed Ru sites that show promoted activity and lower barrier for hydrogenolysis of aromatic ether.

Abstract

While supported-noble-metal catalysts have been widely investigated in hydrotreating reactions, a crucial issue that the catalytic system is still confronted with is developing an efficient approach to gain the high dispersion of noble metals under reducing conditions. In this work, Ru was supported on two MnOx with different specific surface areas (SSAs), and a much higher dispersion of Ru (83%, in contrast to 42% of the other one) was surprisingly observed over MnO with much lower SSA (around one-third of the other one). A suite of complementary characterizations demonstrates that, compared with the catalyst with high SSA (Ru/MnO-H), the MnO in the one with lower SSA (Ru/MnO-L) contains enriched surface oxygen that creates more abundant sites and bears stronger strength to anchor Ru species, mitigating the aggregation of Ru under reducing condition. This not only enriched active sites (i.e., exposed Ru), but also created a more electron-deficient Ru domain and thus enhanced the redox property of the surface, leading to the lower barrier for C–O bond hydrogenolysis. In the hydrogenolysis of diphenyl ether, Ru/MnO-L exhibited significantly enhanced activity (i.e., 6 folds of Ru/MnO-H) and high stability. This work provides an approach to regulate the surface chemistry of support for the high dispersion of supported metal.

Electronic Supplementary Material

Download File(s)
12274_2023_5988_MOESM1_ESM.pdf (854.5 KB)

References

[1]

Friend, C. M.; Xu, B. J. Heterogeneous catalysis: A central science for a sustainable future. Acc. Chem. Res. 2017, 50, 517–521.

[2]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[3]

Zhang, K. L.; Meng, Q. L.; Wu, H. H.; Yan, J.; Mei, X. L.; An, P. F.; Zheng, L. R.; Zhang, J.; He, M. Y.; Han, B. X. Selective hydrodeoxygenation of aromatics to cyclohexanols over Ru single atoms supported on CeO2. J. Am. Chem. Soc. 2022, 144, 20834–20846.

[4]

Liu, S. J.; Bai, L. C.; van Muyden, A. P.; Huang, Z. J.; Cui, X. J.; Fei, Z. F.; Li, X. H.; Hu, X. L.; Dyson, P. J. Oxidative cleavage of β–O–4 bonds in lignin model compounds with a single-atom Co catalyst. Green Chem. 2019, 21, 1974–1981.

[5]

Abdel-Mageed, A. M.; Wiese, K.; Parlinska-Wojtan, M.; Rabeah, J.; Brückner, A.; Behm, R. J. Encapsulation of Ru nanoparticles: Modifying the reactivity toward CO and CO2 methanation on highly active Ru/TiO2 catalysts. Appl. Catal. B: Environ. 2020, 270, 118846.

[6]

Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

[7]

Liang, X.; Fu, N. H.; Yao, S. C.; Li, Z.; Li, Y. D. The progress and outlook of metal single-atom-site catalysis. J. Am. Chem. Soc. 2022, 144, 18155–18174.

[8]

Qin, R. X.; Zhou, L. Y.; Liu, P. X.; Gong, Y.; Liu, K. L.; Xu, C. F.; Zhao, Y.; Gu, L.; Fu, G.; Zheng, N. F. Alkali ions secure hydrides for catalytic hydrogenation. Nat. Catal. 2020, 3, 703–709.

[9]

Xiao, H. F.; Zhang, J. H.; Du, C.; Zheng, Y. X.; Fang, J. H.; Li, S.; Zhang, C. B. Tailoring the electronic Ru–Al2O3 interaction to regulate reaction barriers for selective hydrogenolysis of aromatic ether. ACS Sustainable Chem. Eng. 2023, 11, 1305–1310.

[10]

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts:A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

[11]

Ling, C. Y.; Shi, L.; Ouyang, Y. X.; Zeng, X. C.; Wang, J. L. Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting. Nano Lett. 2017, 17, 5133–5139.

[12]

Kim, S.; Kwon, E. E.; Kim, Y. T.; Jung, S.; Kim, H. J.; Huber, G. W.; Lee, J. Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chem. 2019, 21, 3715–3743.

[13]

Qi, H. F.; Yang, J.; Liu, F.; Zhang, L. L.; Yang, J. Y.; Liu, X. Y.; Li, L.; Su, Y.; Liu, Y. F.; Hao, R. et al. Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones. Nat. Commun. 2021, 12, 3295.

[14]

Rong, H. P.; Ji, S. F.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat. Commun. 2020, 11, 5884.

[15]

Xu, C. L.; Ming, M.; Wang, Q.; Yang, C.; Fan, G. Y.; Wang, Y.; Gao, D. J.; Bi, J.; Zhang, Y. Facile synthesis of effective Ru nanoparticles on carbon by adsorption-low temperature pyrolysis strategy for hydrogen evolution. J. Mater. Chem. A 2018, 6, 14380–14386.

[16]

Hansen, T. W.; DeLaRiva, A. T.; Challa, S. R.; Datye, A. K. Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening. Acc. Chem. Res. 2013, 46, 1720–1730.

[17]

Zhu, Q. L.; Xu, Q. Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem 2016, 1, 220–245.

[18]

Abdel-Mageed, A. M.; Widmann, D.; Olesen, S. E.; Chorkendorff, I.; Biskupek, J.; Behm, R. J. Selective CO methanation on Ru/TiO2 catalysts: Role and influence of metal–support interactions. ACS Catal. 2015, 5, 6753–6763.

[19]

Ta, N.; Liu, J.; Chenna, S., Crozier, P. A.; Li, Y.; Chen, A.; Chen, W. J. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. Adv. Energy Mater. 2012, 134, 20585–20588.

[20]

Sui, X. L.; Zhang, L.; Li, J. J.; Doyle-Davis, K.; Li, R. Y.; Wang, Z. B.; Sun, X. L. Advanced support materials and interactions for atomically dispersed noble-metal catalysts: From support effects to design strategies. Adv. Energy Mater. 2022, 12, 2102556.

[21]

Xin, L.; Yang, F.; Rasouli, S.; Qiu, Y.; Li, Z. F.; Uzunoglu, A.; Sun, C. J.; Liu, Y. Z.; Ferreira, P.; Li, W. Z. et al. Understanding Pt nanoparticle anchoring on graphene supports through surface functionalization. ACS Catal. 2016, 6, 2642–2653.

[22]

Piskun, A. S.; De Haan, J. E.; Wilbers, E.; van de Bovenkamp, H. H.; Tang, Z.; Heeres, H. J. Hydrogenation of levulinic acid to γ-valerolactone in water using millimeter sized supported Ru catalysts in a packed bed reactor. ACS Sustainable Chem. Eng. 2016, 4, 2939–2950.

[23]

Nishi, M.; Chen, S. Y.; Takagi, H. A mesoporous carbon-supported and cs-promoted Ru catalyst with enhanced activity and stability for sustainable ammonia synthesis. ChemCatChem 2018, 10, 3411–3414.

[24]

Zhang, J. H.; Xiao, H. F.; Du, C.; Qin, X. X.; Li, S.; Sun, J. M.; Fang, J. H.; Zhang, C. B. Activating MnO with embedded ru for enhanced selective hydrogenolysis of C–O bonds in lignin-derived ethers over Ru-MnO/Al2O3. ACS Catal. 2022, 12, 9812–9822.

[25]

Zhang, J. H.; Li, Y. B.; Wang, L.; Zhang, C. B.; He, H. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures. Catal. Sci. Technol. 2015, 5, 2305–2313.

[26]

Plomp, A. J.; Vuori, H.; Krause, A. O. I.; de Jong, K. P.; Bitter, J. H. Particle size effects for carbon nanofiber supported platinum and ruthenium catalysts for the selective hydrogenation of cinnamaldehyde. Appl. Catal. A: Gen. 2008, 351, 9–15.

[27]

Rivière, M.; Perret, N.; Cabiac, A.; Delcroix, D.; Pinel, C.; Besson, M. Xylitol hydrogenolysis over ruthenium-based catalysts: Effect of alkaline promoters and basic oxide-modified catalysts. ChemCatChem 2017, 9, 2145–2159.

[28]

Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.

[29]

Yang, S. B.; Feng, X. L.; Müllen, K. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage. Adv. Mater. 2011, 23, 3575–3579.

[30]

Al Salem, H.; Babu, G.; Rao, C. V.; Arava, L. M. R. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries. J. Am. Chem. Soc. 2015, 137, 11542–11545.

[31]

Lou, Y.; Ma, J.; Hu, W. D.; Dai, Q. G.; Wang, L.; Zhan, W. C.; Guo, Y. L.; Cao, X. M.; Guo, Y.; Hu, P. et al. Low-temperature methane combustion over Pd/H-ZSM-5: Active Pd sites with specific electronic properties modulated by acidic sites of H-ZSM-5. ACS Catal. 2016, 6, 8127–8139.

[32]

Peng, Y. M.; Zhang, Y. W.; Guo, A.; Mao, M. Y.; Wang, Y.; Long, Y.; Fan, G. Y. Universal low-temperature oxidative thermal redispersion strategy for green and sustainable fabrication of oxygen-rich carbons anchored metal nanoparticles for hydrogen evolution reactions. Chem. Eng. J. 2022, 433, 133648.

[33]

Li, J. J.; Zhang, M.; Elimian, E. A.; Lv, X. L.; Chen, J.; Jia, H. P. Convergent ambient sunlight-powered multifunctional catalysis for toluene abatement over in situ exsolution of Mn3O4 on perovskite parent. Chem. Eng. J. 2021, 412, 128560.

[34]

Li, W. Q.; Zhou, R. Y.; Wang, X. T.; Hu, L. Y.; Chen, X.; Guan, P. C.; Zhang, X. G.; Zhang, H.; Dong, J. C.; Tian, Z. Q. et al. Identification of the molecular pathways of RuO2 electroreduction by in-situ electrochemical surface-enhanced Raman spectroscopy. J. Catal. 2021, 400, 367–371.

[35]

Huang, J.; Chen, Y. Q.; Rao, P. P.; Ni, Z. M.; Chen, X. Y.; Zhu, J.; Li, C.; Xiong, G. Y.; Liang, P.; He, X. et al. Enhancing the electron transport, quantum yield, and catalytic performance of carbonized polymer dots via Mn-O bridges. Small 2022, 18, 2106863.

[36]

Lopez, T.; Bosch, P.; Asomoza, M.; Gomez, R. Ru/SiO2-impregnated and sol–gel-prepared catalysts: Synthesis, characterization, and catalytic properties. J. Catal. 1992, 133, 247–259.

[37]

Wu, D.; Wang, Q. Y.; Safonova, O. V.; Peron, D. V.; Zhou, W. J.; Yan, Z.; Marinova, M.; Khodakov, A. Y.; Ordomsky, V. V. Lignin compounds to monoaromatics: Selective cleavage of C–O bonds over a brominated ruthenium catalyst. Angew. Chem., Int. Ed. 2021, 60, 12513–12523.

[38]

Tang, H. L.; Su, Y.; Zhang, B. S.; Lee, A. F.; Isaacs, M. A.; Wilson, K.; Li, L.; Ren, Y. G.; Huang, J. H.; Haruta, M. et al. Classical strong metal–support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 2017, 3, e1700231.

[39]

Sun, Y. M.; Sun, S. N.; Yang, H. T.; Xi, S. B.; Gracia, J.; Xu, Z. J. Spin-related electron transfer and orbital interactions in oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003297.

[40]

Zhou, J.; Gao, Z.; Xiang, G. L.; Zhai, T. Y.; Liu, Z. K.; Zhao, W. X.; Liang, X.; Wang, L. Y. Interfacial compatibility critically controls Ru/TiO2 metal–support interaction modes in CO2 hydrogenation. Nat. Commun. 2022, 13, 327.

[41]

Zhang, L. Y.; Wu, K. H.; Ding, Y. X.; Shi, W.; Liu, S. Y.; Niu, Y. M.; Zhang, B. S. Insight into the metal–support interactions between ruthenium and nanodiamond-derived carbon material for CO oxidation. ChemCatChem 2021, 13, 1368–1374.

[42]

Nelson, N. C.; Wang, Z. R.; Naik, P.; Manzano, J. S.; Pruski, M.; Slowing, I. I. Phosphate modified ceria as a Brønsted acidic/redox multifunctional catalyst. J. Mater. Chem. A 2017, 5, 4455–4466.

[43]

Ji, F.; Men, Y.; Wang, J. G.; Sun, Y. L.; Wang, Z. D.; Zhao, B.; Tao, X. T.; Xu, G. J. Promoting diesel soot combustion efficiency by tailoring the shapes and crystal facets of nanoscale Mn3O4. Appl. Catal. B: Environ. 2019, 242, 227–237.

[44]

Liang, G. F.; He, L. M.; Arai, M.; Zhao, F. Y. The Pt-enriched PtNi alloy surface and its excellent catalytic performance in hydrolytic hydrogenation of cellulose. ChemSusChem 2014, 7, 1415–1421.

[45]

Aireddy, D. R.; Ding, K. L. Heterolytic dissociation of H2 in heterogeneous catalysis. ACS Catal. 2022, 12, 4707–4723.

[46]

Jiang, L.; Guo, H. W.; Li, C. Z.; Zhou, P.; Zhang, Z. H. Selective cleavage of lignin and lignin model compounds without external hydrogen, catalyzed by heterogeneous nickel catalysts. Chem. Sci. 2019, 10, 4458–4468.

[47]

Tang, M.; Li, S. D.; Chen, S. Y.; Ou, Y.; Hiroaki, M.; Yuan, W. T.; Zhu, B. E.; Yang, H. S.; Gao, Y.; Zhang, Z. et al. Facet-dependent oxidative strong metal–support interactions of palladium-TiO2 determined by in situ transmission electron microscopy. Angew. Chem., Int. Ed. 2021, 60, 22339–22344.

Nano Research
Pages 12331-12337
Cite this article:
Xiao H, Zhang J, Du C, et al. Enriching the surface oxygen as efficient anchoring site of highly dispersed Ru for enhanced hydrogenolysis activity. Nano Research, 2023, 16(10): 12331-12337. https://doi.org/10.1007/s12274-023-5988-0
Topics:
Part of a topical collection:

778

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 February 2023
Revised: 15 June 2023
Accepted: 06 July 2023
Published: 25 August 2023
© Tsinghua University Press 2023
Return