AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Molecular design for enhanced spin transport in molecular semiconductors

Tingting Yang1,2,§Yang Qin1,2,§Xianrong Gu1( )Xiangnan Sun1,2,3( )
Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

§ Tingting Yang and Yang Qin contributed equally to this work.

Show Author Information

Graphical Abstract

Spin transport performance in molecular semiconductors can be effectively improved by appropriate molecular design from the perspective of ferromagnet/molecular semiconductor interface and molecular semiconductors properties, which has increasingly become the mainstream in molecular spintronics.

Abstract

Molecular semiconductors (MSCs), characterized by a longer spin lifetime than most of other materials due to their weak spin relaxation mechanisms, especially at room temperature, together with their abundant chemical tailorability and flexibility, are regarded as promising candidates for spintronic applications. Molecular spintronics, as an emerging subject that utilizes the unique properties of MSCs to study spin-dependent phenomena and properties, has attracted wide attention. In molecular spintronic devices, MSCs play the role as medium for information transport, process, and storage, in which the efficient spin inject–transport process is the prerequisite. Herein, we focus mainly on summarizing and discussing the recent advances in theoretical principles towards spin transport of MSCs in terms of the injection of spin-polarized carriers through the ferromagnetic metal/MSC interface and the subsequent transport within the MSC layer. Based on the theoretical progress, we cautiously present targeted design strategies of MSCs that contribute to the optimization of spin-transport efficiency and give favorable approaches to exploring accessional possibilities of spintronic materials. Finally, challenges and prospects regarding current spin transport are also presented, aiming to promote the development and application of the rosy and energetic field of molecular spintronics.

References

[1]

Baibich, M. N.; Broto, J. M.; Fert, A.; Nguyen Van Dau, F.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472–2475.

[2]

Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; Von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488–1495.

[3]

Žutić, I.; Fabian, J.; Sarma, S. D. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.

[4]

Dediu, V. A.; Hueso, L. E.; Bergenti, I.; Taliani, C. Spin routes in organic semiconductors. Nat. Mater. 2009, 8, 707–716.

[5]

Han, W.; Kawakami, R. K.; Gmitra, M.; Fabian, J. Graphene spintronics. Nat. Nanotechnol. 2014, 9, 794–807.

[6]

Sanvito, S. Molecular spintronics. Chem. Soc. Rev. 2011, 40, 3336–3355.

[7]

Guo, L. D.; Gu, X. R.; Zhu, X. W.; Sun, X. N. Recent advances in molecular spintronics: Multifunctional spintronic devices. Adv. Mater. 2019, 31, 1805355.

[8]

Dediu, V.; Murgia, M.; Matacotta, F. C.; Taliani, C.; Barbanera, S. Room temperature spin polarized injection in organic semiconductor. Solid State Commun. 2002, 122, 181–184.

[9]

Xiong, Z. H.; Wu, D.; Vardeny, Z. V.; Shi, J. Giant magnetoresistance in organic spin-valves. Nature 2004, 427, 821–824.

[10]

Wang, F. J.; Xiong, Z. H.; Wu, D.; Shi, J.; Vardeny, Z. V. Organic spintronics: The case of Fe/Alq3/Co spin-valve devices. Synth. Met. 2005, 155, 172–175.

[11]

Chen, B. B.; Zhou, Y.; Wang, S.; Shi, Y. J.; Ding, H. F.; Wu, D. Giant magnetoresistance enhancement at room-temperature in organic spin valves based on La0.67Sr0.33MnO3 electrodes. Appl. Phys. Lett. 2013, 103, 072402.

[12]

Vinzelberg, H.; Schumann, J.; Elefant, D.; Gangineni, R. B.; Thomas, J.; Büchner, B. Low temperature tunneling magnetoresistance on (La, Sr)MnO3/Co junctions with organic spacer layers. J. Appl. Phys. 2008, 103, 093720.

[13]

Caruso, A. N.; Schulz, D. L.; Dowben, P. A. Metal hybridization and electronic structure of tris(8-hydroxyquinolato)aluminum (Alq3). Chem. Phys. Lett. 2005, 413, 321–325.

[14]

Raman, K. V.; Chang, J.; Moodera, J. S. New method of spin injection into organic semiconductors using spin filtering tunnel barriers. Org. Electron. 2011, 12, 1275–1278.

[15]

Zhang, X. M.; Ma, Q. L.; Suzuki, K.; Sugihara, A.; Qin, G. W.; Miyazaki, T.; Mizukami, S. Magnetoresistance effect in rubrene-based spin valves at room temperature. ACS Appl. Mater. Interfaces 2015, 7, 4685–4692.

[16]

Sun, X. N.; Bedoya-Pinto, A.; Mao, Z. P.; Gobbi, M.; Yan, W. J.; Guo, Y. L.; Atxabal, A.; Llopis, R.; Yu, G.; Liu, Y. Q. et al. Active morphology control for concomitant long distance spin transport and photoresponse in a single organic device. Adv. Mater. 2016, 28, 2609–2615.

[17]

Nguyen, T. D.; Ehrenfreund, E.; Vardeny, Z. V. Spin-polarized light-emitting diode based on an organic bipolar spin valve. Science 2012, 337, 204–209.

[18]

Majumdar, S.; Majumdar, H. S.; Laiho, R.; Österbacka, R. Comparing small molecules and polymer for future organic spin-valves. J. Alloys Compd. 2006, 423, 169–171.

[19]

Li, F.; Li, T.; Chen, F.; Zhang, F. P. Excellent spin transport in spin valves based on the conjugated polymer with high carrier mobility. Sci. Rep. 2015, 5, 9355.

[20]

Devkota, J.; Geng, R. G.; Subedi, R. C.; Nguyen, T. D. Organic spin valves: A review. Adv. Funct. Mater. 2016, 26, 3881–3898.

[21]

Jang, H. J.; Richter, C. A. Organic spin-valves and beyond: Spin injection and transport in organic semiconductors and the effect of interfacial engineering. Adv. Mater. 2017, 29, 1602739.

[22]

De Jong, M. P. Recent progress in organic spintronics. Open Phys. 2016, 14, 337–353.

[23]

Jullière, M. Tunneling between ferromagnetic films. Phys. Lett. A 1975, 54, 225–226.

[24]

Cinchetti, M.; Dediu, V. A.; Hueso, L. E. Activating the molecular spinterface. Nat. Mater. 2017, 16, 507–515.

[25]

Gu, X. R.; Guo, L. D.; Sun, X. N. Recent spinterfacial studies targeted to spin manipulation in molecular spintronic devices. Chin. Phys. B 2018, 27, 107202.

[26]

Santos, T. S.; Lee, J. S.; Migdal, P.; Lekshmi, I. C.; Satpati, B.; Moodera, J. S. Room-temperature tunnel magnetoresistance and spin-polarized tunneling through an organic semiconductor barrier. Phys. Rev. Lett. 2007, 98, 016601.

[27]

Gobbi, M.; Golmar, F.; Llopis, R.; Casanova, F.; Hueso, L. E. Room-temperature spin transport in C60-based spin valves. Adv. Mater. 2011, 23, 1609–1613.

[28]

Sun, X. N.; Gobbi, M.; Bedoya-Pinto, A.; Txoperena, O.; Golmar, F.; Llopis, R.; Chuvilin, A.; Casanova, F.; Hueso, L. E. Room-temperature air-stable spin transport in bathocuproine-based spin valves. Nat. Commun. 2013, 4, 2794.

[29]

Sun, D. L.; Ehrenfreund, E.; Vardeny, Z. V. The first decade of organic spintronics research. Chem. Commun. 2014, 50, 1781–1793.

[30]

Koplovitz, G.; Primc, D.; Ben Dor, O.; Yochelis, S.; Rotem, D.; Porath, D.; Paltiel, Y. Magnetic nanoplatelet-based spin memory device operating at ambient temperatures. Adv. Mater. 2017, 29, 1606748.

[31]

Ruden, P. Organic spintronics: Interfaces are critical. Nat. Mater. 2011, 10, 8–9.

[32]

Lach, S.; Altenhof, A.; Tarafder, K.; Schmitt, F.; Ali, M. E.; Vogel, M.; Sauther, J.; Oppeneer, P. M.; Ziegler, C. Metal-organic hybrid interface states of a ferromagnet/organic semiconductor hybrid junction as basis for engineering spin injection in organic spintronics. Adv. Funct. Mater. 2012, 22, 989–997.

[33]

Wang, K.; Strambini, E.; Sanderink, J. G. M.; Bolhuis, T.; van Der Wiel, W. G.; De Jong, M. P. Effect of orbital hybridization on spin-polarized tunneling across Co/C60 interfaces. ACS Appl. Mater. Interfaces 2016, 8, 28349–28356.

[34]

Droghetti, A.; Thielen, P.; Rungger, I.; Haag, N.; Großmann, N.; Stöckl, J.; Stadtmüller, B.; Aeschlimann, M.; Sanvito, S.; Cinchetti, M. Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules. Nat. Commun. 2016, 7, 12668.

[35]

Atodiresei, N.; Raman, K. V. Interface-assisted spintronics: Tailoring at the molecular scale. MRS Bull. 2014, 39, 596–601.

[36]

Zhan, Y. Q.; Holmström, E.; Lizárraga, R.; Eriksson, O.; Liu, X. J.; Li, F. H.; Carlegrim, E.; Stafström, S.; Fahlman, M. Efficient spin injection through exchange coupling at organic semiconductor/ferromagnet heterojunctions. Adv. Mater. 2010, 22, 1626–1630.

[37]

Atodiresei, N.; Caciuc, V.; Lazić, P.; Blügel, S. Engineering the magnetic properties of hybrid organic–ferromagnetic interfaces by molecular chemical functionalization. Phys. Rev. B 2011, 84, 172402.

[38]

Wang, S. J.; Venkateshvaran, D.; Mahani, M. R.; Chopra, U.; McNellis, E. R.; Di Pietro, R.; Schott, S.; Wittmann, A.; Schweicher, G.; Cubukcu, M. et al. Long spin diffusion lengths in doped conjugated polymers due to enhanced exchange coupling. Nat. Electron. 2019, 2, 98–107.

[39]

Miyazaki, T.; Tezuka, N. Spin polarized tunneling in ferromagnet/insulator/ferromagnet junctions. J. Magn. Magn. Mater. 1995, 151, 403–410.

[40]

Coropceanu, V.; Cornil, J.; Da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J. L. Charge transport in organic semiconductors. Chem. Rev. 2007, 107, 926–952.

[41]

Yu, Z. G.; Ding, F. Z.; Wang, H. B. Hyperfine interaction and its effects on spin dynamics in organic solids. Phys. Rev. B 2013, 87, 205446.

[42]

Baeg, K. J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y. Y. Organic light detectors: Photodiodes and phototransistors. Adv. Mater. 2013, 25, 4267–4295.

[43]

Horowitz, G. Organic field-effect transistors. 3.0.CO;2-U">Adv. Mater. 1998, 10, 365–377.

[44]

Qin, Y.; Gu, X. R.; Zhang, Y. X.; Hu, S. H.; Guo, A. K.; Zhang, R.; Meng, K.; Yang, T. T.; Zhang, C.; Lu, S. H. et al. Incomplete hetero-structure molecular layer enhancing room-temperature spin-photovoltaic performances. Nano Today 2023, 49, 101763.

[45]

Liu, C. F.; Liu, X.; Lai, W. Y.; Huang, W. Organic light-emitting field-effect transistors: Device geometries and fabrication techniques. Adv. Mater. 2018, 30, 1802466.

[46]

Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Electron transport materials for organic light-emitting diodes. Chem. Mater. 2004, 16, 4556–4573.

[47]

Salis, G.; Alvarado, S. F.; Tschudy, M.; Brunschwiler, T.; Allenspach, R. Hysteretic electroluminescence in organic light-emitting diodes for spin injection. Phys. Rev. B 2004, 70, 085203.

[48]

Hueso, L. E.; Bergenti, I.; Riminucci, A.; Zhan, Y. Q.; Dediu, V. Multipurpose magnetic organic hybrid devices. Adv. Mater. 2007, 19, 2639–2642.

[49]

Prezioso, M.; Riminucci, A.; Bergenti, I.; Graziosi, P.; Brunel, D.; Dediu, V. A. Electrically programmable magnetoresistance in multifunctional organic-based spin valve devices. Adv. Mater. 2011, 23, 1371–1375.

[50]

Prezioso, M.; Riminucci, A.; Graziosi, P.; Bergenti, I.; Rakshit, R.; Cecchini, R.; Vianelli, A.; Borgatti, F.; Haag, N.; Willis, M. et al. A single-device universal logic gate based on a magnetically enhanced memristor. Adv. Mater. 2013, 25, 534–538.

[51]

Yu, Z. G. Suppression of the hanle effect in organic spintronic devices. Phys. Rev, Lett. 2013, 111, 016601.

[52]

Yu, Z. G. Impurity-band transport in organic spin valves. Nat. Commun. 2014, 5, 4842.

[53]

Ando, K.; Watanabe, S.; Mooser, S.; Saitoh, E.; Sirringhaus, H. Solution-processed organic spin-charge converter. Nat. Mater. 2013, 12, 622–627.

[54]

D’yakonov, M. I.; Perel’, V. I. Optical orientation in a system of electrons and lattice nuclei in semiconductors. Theory. Sov. Phys. JETP 1974, 38, 177–183.

[55]

Bobbert, P. A.; Wagemans, W.; van Oost, F. W. A.; Koopmans, B.; Wohlgenannt, M. Theory for spin diffusion in disordered organic semiconductors. Phys. Rev. Lett. 2009, 102, 156604.

[56]

Bobbert, P. A.; Nguyen, T. D.; Wagemans, W.; van Oost, F. W. A.; Koopmans, B.; Wohlgenannt, M. Spin relaxation and magnetoresistance in disordered organic semiconductors. Synth. Met. 2010, 160, 223–229.

[57]

Yu, Z. G. Spin-orbit coupling and its effects in organic solids. Phys. Rev. B 2012, 85, 115201.

[58]

fYafet, Y. g factors and spin-lattice relaxation of conduction electrons. Solid State Phys. 1963, 14, 1–98.

[59]

Yu, Z. G. Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids. Phys. Rev. Lett. 2011, 106, 106602.

[60]

Harmon, N. J.; Flatté, M. E. Distinguishing spin relaxation mechanisms in organic semiconductors. Phys. Rev. Lett. 2013, 110, 176602.

[61]

Schulz, L.; Willis, M.; Nuccio, L.; Shusharov, P.; Fratini, S.; Pratt, F. L.; Gillin, W. P.; Kreouzis, T.; Heeney, M.; Stingelin, N. et al. Importance of intramolecular electron spin relaxation in small molecule semiconductors. Phys. Rev. B 2011, 84, 085209.

[62]

Yu, Z. G. Microscopic theory of electron spin relaxation in N@C60. Phys. Rev. B 2008, 77, 205439.

[63]

Schott, S.; Chopra, U.; Lemaur, V.; Melnyk, A.; Olivier, Y.; Di Pietro, R.; Romanov, I.; Carey, R. L.; Jiao, X. C.; Jellett, C. et al. Polaron spin dynamics in high-mobility polymeric semiconductors. Nat. Phys. 2019, 15, 814–822.

[64]

Geng, R. G.; Roy, A.; Zhao, W. B.; Subedi, R. C.; Li, X. G.; Locklin, J.; Nguyen, T. D. Engineering of spin injection and spin transport in organic spin valves using π-conjugated polymer brushes. Adv. Funct. Mater. 2016, 26, 3999–4006.

[65]

Tedrow, P. M.; Meservey, R. Spin polarization of electrons tunneling from films of Fe, Co, Ni, and Gd. Phys. Rev. B 1973, 7, 318–326.

[66]

Zheng, N. H.; Lin, Z. Z.; Zheng, Y. H.; Li, D.; Yang, J.; Zhang, W. F.; Wang, L. P.; Yu, G. Room-temperature stable organic spin valves using solution-processed ambipolar naphthalenediimide-based conjugated polymers. Org. Electron. 2020, 81, 105684.

[67]

Mooser, S.; Cooper, J. F. K.; Banger, K. K.; Wunderlich, J.; Sirringhaus, H. Spin injection and transport in a solution-processed organic semiconductor at room temperature. Phys. Rev. B 2012, 85, 235202.

[68]

Monsma, D. J.; Parkin, S. S. P. Spin polarization of tunneling current from ferromagnet/Al2O3 interfaces using copper-doped aluminum superconducting films. Appl. Phys. Lett. 2000, 77, 720–722.

[69]

Zhang, X. M.; Mizukami, S.; Kubota, T.; Ma, Q. L.; Oogane, M.; Naganuma, H.; Ando, Y.; Miyazaki, T. Observation of a large spin-dependent transport length in organic spin valves at room temperature. Nat. Commun. 2013, 4, 1392.

[70]

Prigodin, V. N.; Raju, N. P.; Pokhodnya, K. I.; Miller, J. S.; Epstein, A. J. Spin-driven resistance in organic-based magnetic semiconductor Vx. 3.0.CO;2-5">Adv. Mater. 2002, 14, 1230–1233.

[71]

Li, B.; Kao, C. Y.; Lu, Y.; Yoo, J. W.; Prigodin, V. N.; Epstein, A. J. Room-temperature organic-based spin polarizer. Appl. Phys. Lett. 2011, 99, 153503.

[72]

Kao, C. Y.; Yoo, J. W.; Min, Y.; Epstein, A. J. Molecular layer deposition of an organic-based magnetic semiconducting laminate. ACS Appl. Mater. Interfaces 2012, 4, 137–141.

[73]

Yoo, J. W.; Chen, C. Y.; Jang, H. W.; Bark, C. W.; Prigodin, V. N.; Eom, C. B.; Epstein, A. J. Spin injection/detection using an organic-based magnetic semiconductor. Nat. Mater. 2010, 9, 638–642.

[74]

Li, B.; Kao, C. Y.; Yoo, J. W.; Prigodin, V. N.; Epstein, A. J. Magnetoresistance in an all-organic-based spin valve. Adv. Mater. 2011, 23, 3382–3386.

[75]

Naaman, R.; Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 2012, 3, 2178–2187.

[76]

Göhler, B.; Hamelbeck, V.; Markus, T. Z.; Kettner, M.; Hanne, G. F.; Vager, Z.; Naaman, R.; Zacharias, H. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 2011, 331, 894–897.

[77]

Abendroth, J. M.; Cheung, K. M.; Stemer, D. M.; El Hadri, M. S.; Zhao, C. Z.; Fullerton, E. E.; Weiss, P. S. Spin-dependent ionization of chiral molecular films. J. Am. Chem. Soc. 2019, 141, 3863–3874.

[78]

Kettner, M.; Maslyuk, V. V.; Nürenberg, D.; Seibel, J.; Gutierrez, R.; Cuniberti, G.; Ernst, K. H.; Zacharias, H. Chirality-dependent electron spin filtering by molecular monolayers of helicenes. J. Phys. Chem. Lett. 2018, 9, 2025–2030.

[79]

Guo, A. M.; Sun, Q. F. Spin-selective transport of electrons in DNA double helix. Phys. Rev. Lett. 2012, 108, 218102.

[80]

Eremko, A. A.; Loktev, V. M. Spin sensitive electron transmission through helical potentials. Phys. Rev. B 2013, 88, 165409.

[81]

Gersten, J.; Kaasbjerg, K.; Nitzan, A. Induced spin filtering in electron transmission through chiral molecular layers adsorbed on metals with strong spin-orbit coupling. J. Chem. Phys. 2013, 139, 114111.

[82]

Wang, S.; Shi, Y. J.; Lin, L.; Chen, B. B.; Yue, F. J.; Du, J.; Ding, H. F.; Zhang, F. M.; Wu, D. Room-temperature spin valve effects in La0.67Sr0.33MnO3/Alq3/Co devices. Synth. Met. 2011, 161, 1738–1741.

[83]

Jiang, S. W.; Shu, D. J.; Lin, L.; Shi, Y. J.; Shi, J.; Ding, H. F.; Du, J.; Wang, M.; Wu, D. Strong asymmetrical bias dependence of magnetoresistance in organic spin valves: The role of ferromagnetic/organic interfaces. New J. Phys. 2014, 16, 013028.

[84]

Sun, D. L.; Yin, L. F.; Sun, C. J.; Guo, H. W.; Gai, Z.; Zhang, X. G.; Ward, T. Z.; Cheng, Z. H.; Shen, J. Giant magnetoresistance in organic spin valves. Phys. Rev. Lett. 2010, 104, 236602.

[85]

Sun, X. N.; Vélez, S.; Atxabal, A.; Bedoya-Pinto, A.; Parui, S.; Zhu, X. W.; Llopis, R.; Casanova, F.; Hueso, L. E. A molecular spin-photovoltaic device. Science 2017, 357, 677–680.

[86]

Ding, S. S.; Tian, Y.; Wang, H. L.; Zhou, Z.; Mi, W. B.; Ni, Z. J.; Zou, Y.; Dong, H. L.; Gao, H. J.; Zhu, D. B. et al. Reliable spin valves of conjugated polymer based on mechanically transferrable top electrodes. ACS Nano 2018, 12, 12657–12664.

[87]

Sun, W. C.; Guo, L. D.; Hu, S. H.; Zhu, X. W.; Zhang, X. T.; Hu, W. P.; Sun, X. N. Preparation and assessment of reliable organic spin valves. Org. Electron. 2021, 99, 106311.

[88]

Oehzelt, M.; Koch, N.; Heimel, G. Organic semiconductor density of states controls the energy level alignment at electrode interfaces. Nat. Commun. 2014, 5, 4174.

[89]

Cinchetti, M.; Neuschwander, S.; Fischer, A.; Ruffing, A.; Mathias, S.; Wüstenberg, J. P.; Aeschlimann, M. Tailoring the spin functionality of a hybrid metal-organic interface by means of alkali-metal doping. Phys. Rev. Lett. 2010, 104, 217602.

[90]

Li, D.; Wang, X.; Lin, Z. Z.; Zheng, Y. H.; Jiang, Q. Q.; Zheng, N. H.; Zhang, W. F.; Jin, K. J.; Yu, G. Tuning charge carrier and spin transport properties via structural modification of polymer semiconductors. ACS Appl. Mater. Interfaces 2019, 11, 30089–30097.

[91]

Burke, F.; Stamenov, P.; Coey, J. M. D. Charge injection, transport and localization in rubrene. Synth. Met. 2011, 161, 563–569.

[92]

Schott, S.; McNellis, E. R.; Nielsen, C. B.; Chen, H. Y.; Watanabe, S.; Tanaka, H.; McCulloch, I.; Takimiya, K.; Sinova, J.; Sirringhaus, H. Tuning the effective spin-orbit coupling in molecular semiconductors. Nat. Commun. 2017, 8, 15200.

[93]

Krupskaya, Y.; Gibertini, M.; Marzari, N.; Morpurgo, A. F. Band-like electron transport with record-high mobility in the TCNQ family. Adv. Mater. 2015, 27, 2453–2458.

[94]

Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Inkjet printing of single-crystal films. Nature 2011, 475, 364–367.

[95]

Shim, J. H.; Raman, K. V.; Park, Y. J.; Santos, T. S.; Miao, G. X.; Satpati, B.; Moodera, J. S. Large spin diffusion length in an amorphous organic semiconductor. Phys. Rev. Lett. 2008, 100, 226603.

[96]

Dediu, V.; Hueso, L. E.; Bergenti, I.; Riminucci, A.; Borgatti, F.; Graziosi, P.; Newby, C.; Casoli, F.; De Jong, M. P.; Taliani, C. et al. Room-temperature spintronic effects in Alq3-based hybrid devices. Phys. Rev. B 2008, 78, 115203.

[97]

Bedoya-Pinto, A.; Prima-García, H.; Casanova, F.; Coronado, E.; Hueso, L. E. Spin-polarized hopping transport in magnetically tunable rare-earth quinolines. Adv. Electron. Mater. 2015, 1, 1500065.

[98]

Schulz, L.; Nuccio, L.; Willis, M.; Desai, P.; Shakya, P.; Kreouzis, T.; Malik, V. K.; Bernhard, C.; Pratt, F. L.; Morley, N. A. et al. Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer. Nat. Mater. 2011, 10, 39–44.

[99]

Ciudad, D.; Gobbi, M.; Kinane, C. J.; Eich, M.; Moodera, J. S.; Hueso, L. E. Sign control of magnetoresistance through chemically engineered interfaces. Adv. Mater. 2014, 26, 7561–7567.

[100]

Li, D.; Yu, G. Innovation of materials, devices, and functionalized interfaces in organic spintronics. Adv. Funct. Mater. 2021, 31, 2100550.

[101]

Jang, H. J.; Pernstich, K. P.; Gundlach, D. J.; Jurchescu, O. D.; Richter, C. A. Observation of spin-polarized electron transport in Alq3 by using a low work function metal. Appl. Phys. Lett. 2012, 101, 102412.

[102]

Shi, S. W.; Sun, Z. Y.; Bedoya-Pinto, A.; Graziosi, P.; Li, X.; Liu, X. J.; Hueso, L.; Dediu, V. A.; Luo, Y.; Fahlman, M. Hybrid interface states and spin polarization at ferromagnetic metal-organic heterojunctions: Interface engineering for efficient spin injection in organic spintronics. Adv. Funct. Mater. 2014, 24, 4812–4821.

[103]

Prieto-Ruiz, J. P.; Miralles, S. G.; Prima-García, H.; López-Muñoz, A.; Riminucci, A.; Graziosi, P.; Aeschlimann, M.; Cinchetti, M.; Dediu, V. A.; Coronado, E. Enhancing light emission in interface engineered spin-OLEDs through spin-polarized injection at high voltages. Adv. Mater. 2019, 31, 1806817.

[104]

Virkar, A.; Mannsfeld, S.; Oh, J. H.; Toney, M. F.; Tan, Y. H.; Liu, G. Y.; Scott, J. C.; Miller, R.; Bao, Z. N. The role of OTS density on pentacene and C60 nucleation, thin film growth, and transistor performance. Adv. Funct. Mater. 2009, 19, 1962–1970.

[105]

Pookpanratana, S.; Lydecker, L. K.; Richter, C. A.; Hacker, C. A. Self-assembled monolayers impact Cobalt interfacial structure in nanoelectronic junctions. J. Phys. Chem. C 2015, 119, 6687–6695.

[106]

Barraud, C.; Seneor, P.; Mattana, R.; Fusil, S.; Bouzehouane, K.; Deranlot, C.; Graziosi, P.; Hueso, L.; Bergenti, I.; Dediu, V. et al. Unravelling the role of the interface for spin injection into organic semiconductors. Nat. Phys. 2010, 6, 615–620.

[107]

Atodiresei, N.; Brede, J.; Lazić, P.; Caciuc, V.; Hoffmann, G.; Wiesendanger, R.; Blügel, S. Design of the local spin polarization at the organic–ferromagnetic interface. Phys. Rev. Lett. 2010, 105, 066601.

[108]

Cinchetti, M.; Heimer, K.; Wüstenberg, J. P.; Andreyev, O.; Bauer, M.; Lach, S.; Ziegler, C.; Gao, Y. L.; Aeschlimann, M. Determination of spin injection and transport in a ferromagnet/organic semiconductor heterojunction by two-photon photoemission. Nat. Mater. 2009, 8, 115–119.

[109]

Steil, S.; Großmann, N.; Laux, M.; Ruffing, A.; Steil, D.; Wiesenmayer, M.; Mathias, S.; Monti, O. L. A.; Cinchetti, M.; Aeschlimann, M. Spin-dependent trapping of electrons at spinterfaces. Nat. Phys. 2013, 9, 242–247.

[110]

Baldo, M. A.; Forrest, S. R. Interface-limited injection in amorphous organic semiconductors. Phys. Rev. B 2001, 64, 085201.

[111]

Shen, C. F.; Kahn, A.; Schwartz, J. Role of metal-molecule chemistry and interdiffusion on the electrical properties of an organic interface: The Al-F16CuPc case. J. Appl. Phys. 2001, 90, 6236–6242.

[112]

Sun, D. L.; Fang, M.; Xu, X. S.; Jiang, L.; Guo, H. W.; Wang, Y. M.; Yang, W. T.; Yin, L. F.; Snijders, P. C.; Ward, T. Z. et al. Active control of magnetoresistance of organic spin valves using ferroelectricity. Nat. Commun. 2014, 5, 4396.

[113]

Sanvito, S. Molecular spintronics: The rise of spinterface science. Nat. Phys. 2010, 6, 562–564.

[114]

Raman, K. V.; Kamerbeek, A. M.; Mukherjee, A.; Atodiresei, N.; Sen, T. K.; Lazić, P.; Caciuc, V.; Michel, R.; Stalke, D.; Mandal, S. K. et al. Interface-engineered templates for molecular spin memory devices. Nature 2013, 493, 509–513.

[115]

Ma'Mari, F. A.; Moorsom, T.; Teobaldi, G.; Deacon, W.; Prokscha, T.; Luetkens, H.; Lee, S.; Sterbinsky, G. E.; Arena, D. A.; MacLaren, D. A. et al. Beating the Stoner criterion using molecular interfaces. Nature 2015, 524, 69–73.

[116]

Rocha, A. R.; García-Suárez, V. M.; Bailey, S. W.; Lambert, C. J.; Ferrer, J.; Sanvito, S. Towards molecular spintronics. Nat. Mater. 2005, 4, 335–339.

[117]

Guo, L. D.; Qin, Y.; Gu, X. R.; Zhu, X. W.; Zhou, Q.; Sun, X. N. Spin transport in organic molecules. Front. Chem. 2019, 7, 428.

[118]

Zhang, Y. X.; Guo, L. D.; Zhu, X. W.; Sun, X. N. The application of organic semiconductor materials in spintronics. Front. Chem. 2020, 8, 589207.

[119]

Nuccio, L.; Willis, M.; Schulz, L.; Fratini, S.; Messina, F.; D'Amico, M.; Pratt, F. L.; Lord, J. S.; McKenzie, I.; Loth, M. et al. Importance of spin-orbit interaction for the electron spin relaxation in organic semiconductors. Phys. Rev. Lett. 2013, 110, 216602.

[120]

Sheng, C. X.; Singh, S.; Gambetta, A.; Drori, T.; Tong, M.; Tretiak, S.; Vardeny, Z. V. Ultrafast intersystem-crossing in platinum containing π-conjugated polymers with tunable spin-orbit coupling. Sci. Rep. 2013, 3, 2653.

[121]

Nguyen, T. D.; Hukic-Markosian, G.; Wang, F. J.; Wojcik, L.; Li, X. G.; Ehrenfreund, E.; Vardeny, Z. V. The hyperfine interaction role in the spin response of π-conjugated polymer films and spin valve devices. Synth. Met. 2011, 161, 598–603.

[122]

Nguyen, T. D.; Hukic-Markosian, G.; Wang, F. J.; Wojcik, L.; Li, X. G.; Ehrenfreund, E.; Vardeny, Z. V. Isotope effect in spin response of π-conjugated polymer films and devices. Nat. Mater. 2010, 9, 345–352.

[123]

Nguyen, T. D.; Basel, T. P.; Pu, Y. J.; Li, X. G.; Ehrenfreund, E.; Vardeny, Z. V. Isotope effect in the spin response of aluminum tris(8-hydroxyquinoline) based devices. Phys. Rev. B 2012, 85, 245437.

[124]

McNellis, E. R.; Schott, S.; Sirringhaus, H.; Sinova, J. Molecular tuning of the magnetic response in organic semiconductors. Phys. Rev. Mater. 2018, 2, 074405.

[125]

Liang, S. H.; Geng, R. G.; Yang, B. S.; Zhao, W. B.; Subedi, R. C.; Li, X. G.; Han, X. F.; Nguyen, T. D. Curvature-enhanced spin-orbit coupling and spinterface effect in fullerene-based spin valves. Sci. Rep. 2016, 6, 19461.

[126]

Liu, Y. H.; Lee, T.; Katz, H. E.; Reich, D. H. Effects of carrier mobility and morphology in organic semiconductor spin valves. J. Appl. Phys. 2009, 105, 07C708.

[127]

Tran, T. L. A.; Le, T. Q.; Sanderink, J. G. M.; van Der Wiel, W. G.; De Jong, M. P. The multistep tunneling analogue of conductivity mismatch in organic spin valves. Adv. Funct. Mater. 2012, 22, 1180–1189.

[128]

Raman, K. V.; Watson, S. M.; Shim, J. H.; Borchers, J. A.; Chang, J.; Moodera, J. S. Effect of molecular ordering on spin and charge injection in rubrene. Phys. Rev. B 2009, 80, 195212.

[129]

Nguyen, T. D.; Wang, F. J.; Li, X. G.; Ehrenfreund, E.; Vardeny, Z. V. Spin diffusion in fullerene-based devices: Morphology effect. Phys. Rev. B 2013, 87, 075205.

[130]

Geng, R. G.; Subedi, R. C.; Luong, H. M.; Pham, M. T.; Huang, W. C.; Li, X. G.; Hong, K. L.; Shao, M.; Xiao, K.; Hornak, L. A. et al. Effect of charge localization on the effective hyperfine interaction in organic semiconducting polymers. Phys. Rev. Lett. 2018, 120, 086602.

[131]

Kang, H.; Lee, W.; Oh, J.; Kim, T.; Lee, C.; Kim, B. J. From fullerene-polymer to all-polymer solar cells: The importance of molecular packing, orientation, and morphology control. Acc. Chem. Res. 2016, 49, 2424–2434.

[132]

Wittmann, A.; Schweicher, G.; Broch, K.; Novak, J.; Lami, V.; Cornil, D.; McNellis, E. R.; Zadvorna, O.; Venkateshvaran, D.; Takimiya, K. et al. Tuning spin current injection at ferromagnet-nonmagnet interfaces by molecular design. Phys. Rev. Lett. 2020, 124, 027204.

[133]

Tsurumi, J.; Matsui, H.; Kubo, T.; Häusermann, R.; Mitsui, C.; Okamoto, T.; Watanabe, S.; Takeya, J. Coexistence of ultra-long spin relaxation time and coherent charge transport in organic single-crystal semiconductors. Nat. Phys. 2017, 13, 994–998.

[134]

Zhao, Y.; Zhao, X. K.; Zang, Y. P.; Di, C. A.; Diao, Y.; Mei, J. G. Conjugation-break spacers in semiconducting polymers: Impact on polymer processability and charge transport properties. Macromolecules 2015, 48, 2048–2053.

[135]

Qin, Y.; Chang, Y. L.; Zhu, X. W.; Gu, X. R.; Guo, L. D.; Zhang, Y. X.; Wang, Q.; Zhang, J. Q.; Zhang, X. L.; Liu, X. F. et al. 18.4% efficiency achieved by the cathode interface engineering in non-fullerene polymer solar cells. Nano Today 2021, 41, 101289.

[136]

Gobbi, M.; Pietrobon, L.; Atxabal, A.; Bedoya-Pinto, A.; Sun, X.; Golmar, F.; Llopis, R.; Casanova, F.; Hueso, L. E. Determination of energy level alignment at metal/molecule interfaces by in-device electrical spectroscopy. Nat. Commun. 2014, 5, 4161.

[137]

Jiang, J. S.; Pearson, J. E.; Bader, S. D. Direct determination of energy level alignment and charge transport at metal-Alq3 interfaces via ballistic-electron-emission spectroscopy. Phys. Rev. Lett. 2011, 106, 156807.

[138]

Lin, F. J.; Guo, C.; Chuang, W. T.; Wang, C. L.; Wang, Q. B.; Liu, H.; Hsu, C. S.; Jiang, L. Directional solution coating by the Chinese brush: A facile approach to improving molecular alignment for high-performance polymer TFTs. Adv. Mater. 2017, 29, 1606987.

Nano Research
Pages 13457-13473
Cite this article:
Yang T, Qin Y, Gu X, et al. Molecular design for enhanced spin transport in molecular semiconductors. Nano Research, 2023, 16(12): 13457-13473. https://doi.org/10.1007/s12274-023-5989-z
Topics:
Part of a topical collection:

1178

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 28 April 2023
Revised: 26 June 2023
Accepted: 06 July 2023
Published: 08 September 2023
© Tsinghua University Press 2023
Return