Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Ruthenium (Ru) is an attractive potential alternative to platinum as an electrocatalyst for the oxygen reduction reaction (ORR), in virtue of its high catalytic selectivity and relatively low price. In this work, a series of well-dispersed nitrogen-coordinated Ru-clusters on carbon black (RuxNy/C) were prepared by pyrolyzing different Ru-containing sandwich compounds as the Ru sources. The higher thermal stability of these complexed sandwich precursors (bis(1,2,3,4,5-pentamethylcyclopentadienyl) Ru(II) monomer, dichloro(p-cymene) Ru(II) dimer, and chloro(1,2,3,4,5-pentamethylcyclopentadienyl) Ru(II) tetramer) affords the control of coordinated state for the resulting Ru-clusters, in comparison of that derived from ruthenium chlorides. After the pyrolysis treatment, the Ru coordinated state in RuxNy/C, with the Ru–N and Ru–Ru bonds, still showed the structural inheritance from the Ru(II) monomer, dimer, and tetramer, but using ruthenium chlorides as the Ru source resulted in the nanoscale Ru agglomerations. The ORR testing exhibited that the RuxNy/C sample derived from the Ru(II) tetramer (RuxNy/C-T) presents the higher catalytic activity than the other obtained samples in either alkaline or acidic electrolytes. Even in the acidic electrolyte, RuxNy/C-T shows the comparable ORR activity to that of Pt/C catalysts, and it shows the superior tolerance against methanol and CO. The X-ray absorption spectroscopy and density functional theory calculations demonstrate that these tetra-nuclear Ru-clusters could be the most active site due to their broadened d-orbital bands and lower energy d-band center than those of other subnano species and nanocrystals, and their favorable Yeager-type adsorption of O2-molecules is also contributed to promoting O–O bond cleavage and accelerating the ORR process.
Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.
Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 2650–2676.
Wang, X. X.; Swihart, M. T.; Wu, G. Achievements, challenges, and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2, 578–589.
Sui, S.; Wang, X. Y.; Zhou, X. T.; Su, Y. H.; Riffat, S.; Liu, C. J. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism, and carbon support in PEM fuel cells. J. Mater. Chem. A 2017, 5, 1808–1825.
Li, C. L.; Tan, H. B.; Lin, J. J.; Luo, X. L.; Wang, S. P.; You, J.; Kang, Y. M.; Bando, Y.; Yamauchi, Y.; Kim, J. Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today 2018, 21, 91–105.
Miao, Z. P.; Wang, X. M.; Tsai, M. C.; Jin, Q. Q.; Liang, J. S.; Ma, F.; Wang, T. Y.; Zheng, S. J.; Hwang, B. J.; Huang, Y. H. et al. Atomically dispersed Fe-Nx/C electrocatalyst boosts oxygen catalysis via a new metal–organic polymer supramolecule strategy. Adv. Energy Mater. 2018, 8, 1801226.
Yang, H.; Chen, X.; Chen, W. T.; Wang, Q.; Cuello, N. C.; Nafady, A.; Al-Enizi, A. M.; Waterhouse, G. I. N.; Goenaga, G. A.; Zawodzinski, T. A. et al. Tunable synthesis of hollow metal-nitrogen-carbon capsules for efficient oxygen reduction catalysis in proton exchange membrane fuel cells. ACS Nano 2019, 13, 8087–8098.
Zhu, W.; Chen, C. Reaction: Open up the era of atomically precise catalysis. Chem 2019, 5, 2737–2739.
Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction, and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.
Mitsudome, T.; Takahashi, Y.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Hydrogenation of sulfoxides to sulfides under mild conditions using ruthenium nanoparticle catalysts. Angew. Chem., Int. Ed. 2014, 53, 8348–8351.
Kitano, M.; Kanbara, S.; Inoue, Y.; Kuganathan, N.; Sushko, P. V.; Yokoyama, T.; Hara, M.; Hosono, H. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat. Commun. 2015, 6, 6731.
Laha, S.; Lee, Y.; Podjaski, F.; Weber, D.; Duppel, V.; Schoop, L. M.; Pielnhofer, F.; Scheurer, C.; Müller, K.; Starke, U. et al. Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium. Adv. Energy Mater. 2019, 9, 1803795.
Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.
Li, F.; Han, G. F.; Noh, H. J.; Ahmad, I.; Jeon, I. Y.; Baek, J. B. Mechanochemically assisted synthesis of a Ru catalyst for hydrogen evolution with performance superior to Pt in both acidic and alkaline media. Adv. Mater. 2018, 30, 1803676.
Zhou, Y. Y.; Xie, Z. Y.; Jiang, J. X.; Wang, J.; Song, X. Y.; He, Q.; Ding, W.; Wei, Z. D. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 2020, 3, 454–462.
Kuznetsov, D. A.; Naeem, M. A.; Kumar, P. V.; Abdala, P. M.; Fedorov, A.; Müller, C. R. Tailoring lattice oxygen binding in ruthenium pyrochlores to enhance oxygen evolution activity. J. Am. Chem. Soc. 2020, 42, 7883–7888.
Peng, X. Y.; Zhao, S. Z.; Mi, Y. Y.; Han, L. L.; Liu, X. J.; Qi, D. F.; Sun, J. Q.; Liu, Y. F.; Bao, H. H.; Zhuo, L. C. et al. Trifunctional single-atomic Ru sites enable efficient overall water splitting and oxygen reduction in acidic media. Small 2020, 16, 2002888.
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
Zagal, J. H.; Koper, M. T. M. Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2016, 55, 14510–14521.
Ao, X.; Zhang, W.; Li, Z. S.; Li, J. G.; Soule, L.; Huang, X.; Chiang, W. H.; Chen, H. M.; Wang, C. D.; Liu, M. L. et al. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 2019, 13, 11853–11862.
Hammer, B.; Norskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240.
Raja, M. U.; Sindhuja, E.; Ramesh, R. Arene ruthenium(II) p-chloroacetophenone phenylthiosemicarbazone complex mediated transfer hydrogenation of ketones. Inorg. Chem. Commun. 2010, 13, 1321–1324.
Guan, L. H.; Shi, Z. J.; Li, M. X.; Gu, Z. N. Ferrocene-filled single-walled carbon nanotubes. Carbon 2005, 43, 2780–2785.
Li, W. D.; Liu, Y.; Wu, M.; Feng, X. L.; Redfern, S. A. T.; Shang, Y.; Yong, X.; Feng, T. L.; Wu, K. F.; Liu, Z. Y. et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater. 2018, 30, 1800676.
Li, Z. Y.; Young, N. P.; Di Vece, M.; Palomba, S.; Palmer, R. E.; Bleloch, A. L.; Curley, B. C.; Johnston, R. L.; Jiang, J.; Yuan, J. Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 2008, 451, 46–48.
Ji, S. F.; Chen, Y. J.; Fu, Q.; Chen, Y. F.; Dong, J. C.; Chen, W. X.; Li, Z.; Wang, Y.; Gu, L.; He, W. et al. Confined pyrolysis within metal–organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 2017, 139, 9795–9798.
Bai, L. C.; Hsu, C. S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. L. A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 14190–14199.
Peters, S.; Peredkov, S.; Neeb, M.; Eberhardt, W.; Al-Hada, M. Size-dependent XPS spectra of small supported Au-clusters. Surf. Sci. 2013, 608, 129–134.
Li, P. S.; Wang, M. Y.; Duan, X. X.; Zheng, L. R.; Cheng, X. P.; Zhang, Y. F.; Kuang, Y.; Li, Y. P.; Ma, Q.; Feng, Z. X. et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 2019, 10, 1711.
Xiao, M. L.; Chen, Y. T.; Zhu, J. B.; Zhang, H.; Zhao, X.; Gao, L. Q.; Wang, X.; Zhao, J.; Ge, J. J.; Jiang, Z. et al. Climbing the apex of the ORR volcano plot via binuclear site construction: Electronic and geometric engineering. J. Am. Chem. Soc. 2019, 141, 17763–17770.
Yang, S.; Tak, Y. J.; Kim, J.; Soon, A.; Lee, H. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 2017, 7, 1301–1307.
Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem., Int. Ed. 2016, 55, 2058–2062.
Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis—Calculations and concepts. Adv. Catal. 2000, 45, 71–129.
Cui, L. X.; Fan, K. C.; Zong, L. B.; Lu, F. H.; Zhou, M.; Li, B.; Zhang, L. C.; Feng, L. Y.; Li, X.; Chen, Y. N. et al. Sol-gel pore-sealing strategy imparts tailored electronic structure to the atomically dispersed Ru sites for efficient oxygen reduction reaction. Energy Storage Mater. 2022, 44, 469–476.
Wu, L. Q.; Su, L. X.; Liang, Q.; Zhang, W.; Men, Y.; Luo, W. Boosting hydrogen oxidation kinetics by promoting interfacial water adsorption on d-p hybridized Ru catalysts. ACS Catal. 2023, 13, 4127–4133.
Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 2016, 138, 3570–3578.
Liu, S. S.; Wang, M. F.; Sun, X. Y.; Xu, N.; Liu, J.; Wang, Y. Z.; Qian, T.; Yan, C. L. Facilitated oxygen chemisorption in heteroatom-doped carbon for improved oxygen reaction activity in all-solid-state zinc-air batteries. Adv. Mater. 2018, 30, 1704898.
Tang, C.; Zhang, Q. Nanocarbon for oxygen reduction electrocatalysis: Dopants, edges, and defects. Adv. Mater. 2017, 29, 1604103.