Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrochemical production of hydrogen peroxide (H2O2) via the two-electron (2e−) pathway of oxygen reduction reaction (ORR) supplies an auspicious alternative to the current industrial anthraquinone process. Nonetheless, it still lacks efficient electrocatalysts to achieve high ORR activity together with 2e− selectivity simultaneously. Herein, a boron-doped defective nanocarbon (B-DC) electrocatalyst is synthesized by using fullerene frameworks as the precursor and boric oxide as the boron source. The obtained B-DC materials have a hierarchical porous structure, befitting boron dopants, and abundant topological pentagon defects, exhibiting a high ORR onset potential of 0.78 V and a dominated 2e− selectivity (over 95%). Remarkably, when B-DC electrocatalyst is employed in a real device, it achieves a high H2O2 yield rate (247 mg·L−1·h−1), quantitative Faraday efficiency (~ 100%), and ultrafast organic pollutant degradation rate. The theoretical calculation reveals that the synergistic effect of topological pentagon defects and the incorporation of boron dopants promote the activation of the O2 molecule and facilitates the desorption of oxygen intermediate. This finding will be very helpful for the comprehension of the synergistic effect of topological defects and heteroatom dopants for boosting the electrocatalytic performance of nanocarbon toward H2O2 production.
Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.
Yamanaka, I.; Onizawa, T.; Takenaka, S.; Otsuka, K. Direct and continuous production of hydrogen peroxide with 93% selectivity using a fuel-cell system. Angew. Chem., Int. Ed. 2003, 42, 3653–3655.
Fellinger, T. P.; Hasché, F.; Strasser, P.; Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2012, 134, 4072–4075.
Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137–1143.
Huang, X.; Song, M.; Zhang, J.; Zhang, J. J.; Liu, W.; Zhang, C.; Zhang, W.; Wang, D. L. Investigation of MXenes as oxygen reduction electrocatalyst for selective H2O2 generation. Nano Res. 2022, 15, 3927–3932.
Jin, Z.; Liu, Y. F.; Wang, L.; Wang, C. T.; Wu, Z. Y.; Zhu, Q. Y.; Wang, L. X.; Xiao, F. S. Direct synthesis of pure aqueous H2O2 solution within aluminosilicate zeolite crystals. ACS Catal. 2021, 11, 1946–1951.
Jiang, Y. Y.; Ni, P. J.; Chen, C. X.; Lu, Y. Z.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 2018, 8, 1801909.
Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J. H.; Yang, P. D.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282–290.
Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L. I.; Sieber, V.; Wang, L.; Ponce De León, C.; Walsh, F. C. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 2019, 3, 442–458.
Zhang, L. C.; Liang, J.; Yue, L. C.; Xu, Z. Q.; Dong, K.; Liu, Q.; Luo, Y. L.; Li, T. S.; Cheng, X. H.; Cui, G. W. et al. N-doped carbon nanotubes supported CoSe2 nanoparticles: A highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media. Nano Res 2022, 15, 304–309.
Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem., Int. Ed. 2016, 55, 2058–2062.
Li, H.; Wen, P.; Itanze, D. S.; Hood, Z. D.; Adhikari, S.; Lu, C.; Ma, X.; Dun, C.; Jiang, L.; Carroll, D. L. et al. Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways. Nat. Commun. 2020, 11, 3928.
Jirkovský, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 2011, 133, 19432–19441.
Verdaguer-Casadevall, A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T. W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Trends in the electrochemical synthesis of H2O2: Enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 2014, 14, 1603–1608.
Wang, N.; Zhao, X. H.; Zhang, R.; Yu, S.; Levell, Z. H.; Wang, C. Y.; Ma, S. B.; Zou, P. C.; Han, L. L.; Qin, J. Y. et al. Highly selective oxygen reduction to hydrogen peroxide on a carbon-supported single-atom Pd electrocatalyst. ACS Catal. 2022, 12, 4156–4164.
Choi, C. H.; Kwon, H. C.; Yook, S.; Shin, H.; Kim, H.; Choi, M. Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface. J. Phys. Chem. C 2014, 118, 30063–30070.
Yang, T.; Yang, C. Y.; Le, J. B.; Yu, Z. Y.; Bu, L. Z.; Li, L. G.; Bai, S. X.; Shao, Q.; Hu, Z. W.; Pao, C. W. et al. Atomically isolated Pd sites within Pd-S nanocrystals enable trifunctional catalysis for direct, electrocatalytic and photocatalytic syntheses of H2O2. Nano Res. 2022, 15, 1861–1867.
Favaro, M.; Ferrighi, L.; Fazio, G.; Colazzo, L.; Di Valentin, C.; Durante, C.; Sedona, F.; Gennaro, A.; Agnoli, S.; Granozzi, G. Single and multiple doping in graphene quantum dots: Unraveling the origin of selectivity in the oxygen reduction reaction. ACS Catal. 2015, 5, 129–144.
Xia, Y.; Zhao, X. H.; Xia, C.; Wu, Z. Y.; Zhu, P.; Kim, J. Y.; Bai, X. W.; Gao, G. H.; Hu, Y. F.; Zhong, J. et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 2021, 12, 4225.
Chang, Y. N.; Li, J. W.; Ma, J.; Liu, Y.; Xing, R.; Wang, Y. Q.; Zhang, G. X. Oxygenated boron-doped carbon via polymer dehalogenation as an electrocatalyst for high-efficiency O2 reduction to H2O2. Sci. China Mater. 2022, 65, 1276–1284.
Zhao, Y.; Yang, L. J.; Chen, S.; Wang, X. Z.; Ma, Y. W.; Wu, Q.; Jiang, Y. F.; Qian, W. J.; Hu, Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes. J. Am. Chem. Soc. 2013, 135, 1201–1204.
Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.
Zhang, C.; Zhang, J.; Zhang, J. J.; Song, M.; Huang, X.; Liu, W.; Xiong, M.; Chen, Y. Q.; Xia, S. W.; Yang, H. P. et al. Tuning coal into graphene-like nanocarbon for electrochemical H2O2 production with nearly 100% Faraday efficiency. ACS Sustainable Chem. Eng. 2021, 9, 9369–9375.
Zhang, C.; Liu, W.; Song, M.; Zhang, J. J.; He, F.; Wang, J.; Xiong, M.; Zhang, J.; Wang, D. L. Pyranoid-O-dominated graphene-like nanocarbon for two-electron oxygen reduction reaction. Appl. Catal. B Environ. 2022, 307, 121173.
Bo, X. J.; Guo, L. P. Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution. Phys. Chem. Chem. Phys. 2013, 15, 2459–2465.
Zhang, J.; Zhang, J. J.; He, F.; Chen, Y. J.; Zhu, J. W.; Wang, D. L.; Mu, S. C.; Yang, H. Y. Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Lett. 2021, 13, 65.
Ly, Q.; Merinov, B. V.; Xiao, H.; Goddard, W. A.; Yu, T. H. The oxygen reduction reaction on graphene from quantum mechanics: Comparing armchair and zigzag carbon edges. J. Phys. Chem. C 2017, 121, 24408–24417.
Yu, L. H.; Tang, L.; Guo, W.; Li, C. H.; Shin, D.; Liu, Z. G.; Lin, Y. M. Disclosing the natures of carbon edges with gradient nanocarbons for electrochemical hydrogen peroxide production. Matter 2022, 5, 1909–1923.
Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Kim, T. R.; Nordlund, D.; Sokaras, D.; Nowak, S.; To, J. W. F.; Higgins, D.; Sinclair, R. et al. Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide. ACS Sustainable Chem. Eng. 2018, 6, 311–317.
Bu, Y. F.; Wang, Y. B.; Han, G. F.; Zhao, Y. X.; Ge, X. L.; Li, F.; Zhang, Z. H.; Zhong, Q.; Baek, J. B. Carbon-based electrocatalysts for efficient hydrogen peroxide production. Adv. Mater. 2021, 33, 2103266.
Zhu, J. W.; Huang, Y. P.; Mei, W. C.; Zhao, C. Y.; Zhang, C. T.; Zhang, J.; Amiinu, I. S.; Mu, S. C. Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials. Angew. Chem., Int. Ed. 2019, 58, 3859–3864.
Liu, S.; Zhang, Y. C.; Ge, B. H.; Zheng, F. C.; Zhang, N.; Zuo, M.; Yang, Y.; Chen, Q. W. Constructing graphitic-nitrogen-bonded pentagons in interlayer-expanded graphene matrix toward carbon-based electrocatalysts for acidic oxygen reduction reaction. Adv. Mater. 2021, 33, 2103133.
Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.
Park, J.; Nabae, Y.; Hayakawa, T.; Kakimoto, M. A. Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon. ACS Catal. 2014, 4, 3749–3754.
Chen, G. Y.; Liu, J. W.; Li, Q. Q.; Guan, P. F.; Yu, X. F.; Xing, L. S.; Zhang, J.; Che, R. C. A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. Nano Res. 2019, 12, 2614–2622.
Liu, Y. M.; Quan, X.; Fan, X. F.; Wang, H.; Chen, S. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem., Int. Ed. 2015, 54, 6837–6841.
Xu, H.; Lv, X. H.; Wang, H. Y.; Ye, J. Y.; Yuan, J. Y.; Wang, Y. C.; Zhou, Z. Y.; Sun, S. G. Impact of pore structure on two-electron oxygen reduction reaction in nitrogen-doped carbon materials: Rotating ring-disk electrode vs. flow cell. ChemSusChem 2022, 15, e202102587.
Deng, Z. P.; Wang, X. L. Mechanism investigation of enhanced electrochemical H2O2 production performance on oxygen-rich hollow porous carbon spheres. Nano Res. 2022, 15, 4599–4605.
Lu, L.; Sahajwalla, V.; Kong, C.; Harris, D. Quantitative X-ray diffraction analysis and its application to various coals. Carbon 2001, 39, 1821–1833.
Chen, C. Y.; Tang, C.; Wang, H. F.; Chen, C. M.; Zhang, X. Y.; Huang, X.; Zhang, Q. Oxygen reduction reaction on graphene in an electro-fenton system: In situ generation of H2O2 for the oxidation of organic compounds. ChemSusChem 2016, 9, 1194–1199.
Zhang, J.; Sun, Y. M.; Zhu, J. W.; Kou, Z. K.; Hu, P.; Liu, L.; Li, S. Z.; Mu, S. C.; Huang, Y. H. Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. Nano Energy 2018, 52, 307–314.
Jawhari, T.; Roid, A.; Casado, J. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 1995, 33, 1561–1565.
Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742.
Montemore, M. M.; Van Spronsen, M. A.; Madix, R. J.; Friend, C. M. O2 activation by metal surfaces: Implications for bonding and reactivity on heterogeneous catalysts. Chem. Rev 2018, 118, 2816–2862.
Zhang, C.; Shen, W. Q.; Guo, K.; Xiong, M.; Zhang, J.; Lu, X. A pentagonal defect-rich metal-free carbon electrocatalyst for boosting acidic O2 reduction to H2O2 production. J. Am. Chem. Soc. 2023, 145, 11589–11598.
Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. USA 2011, 108, 937–943.
Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem., Int. Ed. 2006, 45, 2897–2901.
Viswanathan, V.; Hansen, H. A.; Rossmeisl, J.; Nørskov, J. K. Unifying the 2e− and 4e− reduction of oxygen on metal surfaces. J. Phys. Chem. Lett. 2012, 3, 2948–2951.