Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Chiral chemicals have attracted significant interest in the pharmaceutical industry, yet the separation methods to get pure enantiomers from racemic mixture are still challenging. To date, the separation of enantiomers still mainly depends on chromatography using high-cost chiral stationary phases. Herein, wood channels were used as the handheld integrated device, and enantiomer separation was simultaneously detected using an electrochemical detector. In this method, a chiral UIO-66 (L-UIO-66) modified enantiomer separation zone and carbonized wood based online detection zone are integrated along a single wood column. Based on the in situ separation results from the chronoamperometry data, the wood device shows excellent separation ability for a wide range of electrochemically active enantiomers, including 3,4-dihydroxyphenylalanine, amino acids, ascorbic acid, carnitine, and penicillamine with high chirality purity. The unbiased molecular dynamic simulations indicate that the excellent chiral recognition and separation are attributed to the different barriers from the bound states to the dissociated state of the enantiomers in the homochiral microenvironment of the framework. This integrated enantiomer separation-electrochemical detection device provides a novel, easy, and low-cost platform for the separation of pure enantiomer from racemic mixture.
Kasprzyk-Hordern, B. Pharmacologically active compounds in the environment and their chirality. Chem. Soc. Rev. 2010, 39, 4466–4503.
Liu, Y.; Xuan, W. M.; Cui, Y. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv. Mater. 2010, 22, 4112–4135.
Chankvetadze, B. Application of enantioselective separation techniques to bioanalysis of chiral drugs and their metabolites. Trends Analyt. Chem. 2021, 143, 116332.
Okamoto, Y.; Ikai, T. Chiral HPLC for efficient resolution of enantiomers. Chem. Soc. Rev. 2008, 37, 2593–2608.
Huang, Y. N.; Zeng, H.; Xie, L.; Gao, R. H.; Zhou, S.; Liang, Q. R.; Zhang, X.; Liang, K.; Jiang, L.; Kong, B. Super-assembled chiral mesostructured heteromembranes for smart and sensitive couple-accelerated enantioseparation. J. Am. Chem. Soc. 2022, 144, 13794–13805.
Shen, J.; Okamoto, Y. Efficient separation of enantiomers using stereoregular chiral polymers. Chem. Rev. 2016, 116, 1094–1138.
Chen, Z. J.; Li, P. H.; Anderson, R.; Wang, X. J.; Zhang, X.; Robison, L.; Redfern, L. R.; Moribe, S.; Islamoglu, T.; Gómez-Gualdrón, D. A. et al. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 2020, 368, 297–303.
Xu, J.; Xue, Y. F.; Jian, X. X.; Zhao, Y.; Dai, Z. Q.; Xu, J. W.; Gao, Z. D.; Mei, Y.; Song, Y. Y. Understanding of chiral site-dependent enantioselective identification on a plasmon-free semiconductor based SERS substrate. Chem. Sci. 2022, 13, 6550–6557.
Guo, J. L.; Xu, H. J.; Zhao, J. J.; Gao, Z. D.; Wu, Z. Q.; Song, Y. Y. Locally superengineered cascade recognition-quantification zones in nanochannels for sensitive enantiomer identification. Chem. Sci. 2022, 13, 9993–10002.
Guo, J. L.; Liu, X. A.; Zhao, J. J.; Xu, H. J.; Gao, Z. D.; Wu, Z. Q.; Song, Y. Y. Rational design of mesoporous chiral MOFs as reactive pockets in nanochannels for enzyme-free identification of monosaccharide enantiomers. Chem. Sci. 2023, 14, 1742–1751.
Zhang, S. Y.; Yang, C. X.; Shi, W.; Yan, X. P.; Cheng, P.; Wojtas, L.; Zaworotko, M. J. A chiral metal-organic material that enables enantiomeric identification and purification. Chem 2017, 3, 281–289.
Corella-Ochoa, M. N.; Tapia, J. B.; Rubin, H. N.; Lillo, V.; González-Cobos, J.; Núñez-Rico, J. L.; Balestra, S. R. G.; Almora-Barrios, N.; Lledós, M.; Güell-Bara, A. et al. Homochiral metal-organic frameworks for enantioselective separations in liquid chromatography. J. Am. Chem. Soc. 2019, 141, 14306–14316.
Xu, J. W.; Liang, C. C.; Gao, Z. D.; Song, Y. Y. Construction of nanoreactors on TiO2 nanotube arrays as a POCT device for sensitive colorimetric detection. Chin. Chem. Lett. 2023, 34, 107863.
Yang, L. L.; Feng, J. J.; Wang, J. N.; Gao, Z. D.; Xu, J. W.; Mei, Y.; Song, Y. Y. Engineering large-scaled electrochromic semiconductor films as reproductive SERS substrates for operando investigation at the solid/liquid interfaces. Chin. Chem. Lett. 2022, 33, 5169–5173.
Chen, C. J.; Hu, L. B. Nanoscale ion regulation in wood-based structures and their device applications. Adv. Mater. 2021, 33, 2002890.
Montanari, C.; Olsén, P.; Berglund, L. A. Interface tailoring by a versatile functionalization platform for nanostructured wood biocomposites. Green Chem. 2020, 22, 8012–8023.
Akpan, E. I.; Wetzel, B.; Friedrich, K. Eco-friendly and sustainable processing of wood-based materials. Green Chem. 2021, 23, 2198–2232.
Guo, R. X.; Cai, X. H.; Liu, H. W.; Yang, Z.; Meng, Y. J.; Chen, F. J.; Li, Y. J.; Wang, B. D. In situ growth of metal-organic frameworks in three-dimensional aligned lumen arrays of wood for rapid and highly efficient organic pollutant removal. Environ. Sci. Technol. 2019, 53, 2705–2712.
Kim, S.; Kim, K.; Jun, G.; Hwang, W. Wood-nanotechnology-based membrane for the efficient purification of oil-in-water emulsions. ACS Nano 2020, 14, 17233–17240.
Chen, F. J.; Gong, A. S.; Zhu, M. W.; Chen, G.; Lacey, S. D.; Jiang, F.; Li, Y. F.; Wang, Y. B.; Dai, J. Q.; Yao, Y. G. et al. Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano 2017, 11, 4275–4282.
Chen, C. J.; Kuang, Y. D.; Zhu, S. Z.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S. J.; Hu, L. B. Structure-property-function relationships of natural and engineered wood. Nat. Rev. Mater. 2020, 5, 642–666.
Wang, Y. M.; Lin, X. J.; Liu, T.; Chen, H.; Chen, S.; Jiang, Z. J.; Liu, J.; Huang, J. L.; Liu, M. L. Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors. Adv. Funct. Mater. 2018, 28, 1806207.
Xia, C. L.; Kang, C. W.; Patel, M. D.; Cai, L. P.; Gwalani, B.; Banerjee, R.; Shi, S. Q.; Choi, W. Pine wood extracted activated carbon through self-activation process for high-performance lithium-ion battery. ChemistrySelect 2016, 1, 4000–4007.
Li, Y. J.; Fu, K.; Chen, C. J.; Luo, W.; Gao, T. T.; Xu, S. M.; Dai, J. Q.; Pastel, G.; Wang, Y. B.; Liu, B. Y. et al. Enabling high-areal-capacity lithium-sulfur batteries: Designing anisotropic and low-tortuosity porous architectures. ACS Nano 2017, 11, 4801–4807.
Tu, K. K.; Puértolas, B.; Adobes-Vidal, M.; Wang, Y. R.; Sun, J. G.; Traber, J.; Burgert, I.; Pérez-Ramírez, J.; Keplinger, T. Green synthesis of hierarchical metal-organic framework/wood functional composites with superior mechanical properties. Adv. Sci. 2020, 7, 1902897.
Lin, R. B.; Xiang, S. C.; Zhou, W.; Chen, B. L. Microporous metal-organic framework materials for gas separation. Chem 2020, 6, 337–363.
Ma, X. F.; Xiong, Y.; Liu, Y. S.; Han, J. Q.; Duan, G. G.; Chen, Y. M.; He, S. J.; Mei, C. T.; Jiang, S. H.; Zhang, K. When MOFs meet wood: From opportunities toward applications. Chem 2022, 8, 2342–2361.
Su, M. L.; Zhang, R.; Li, H. R.; Jin, X. B.; Li, J. P.; Yue, X. F.; Qin, D. C. In situ deposition of MOF199 onto hierarchical structures of bamboo and wood and their antibacterial properties. RSC Adv. 2019, 9, 40277–40285.
Trott, O.; Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461.
Wang, J. M.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174.
Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935.
Langevin, P. Langevin equation. C. R. Acad. Sci. 1908, 146, 530.
Tribello, G. A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014, 185, 604–613.
Jiang, H.; Yang, K. W.; Zhao, X. X.; Zhang, W. Q.; Liu, Y.; Jiang, J. W.; Cui, Y. Highly stable Zr(IV)-based metal-organic frameworks for chiral separation in reversed-phase liquid chromatography. J. Am. Chem. Soc. 2021, 143, 390–398.
Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C. Disclosing the complex structure of UiO-66 metal organic framework: A synergic combination of experiment and theory. Chem. Mater. 2011, 23, 1700–1718.
Hu, C.; Bai, Y. X.; Hou, M.; Wang, Y. S.; Wang, L. C.; Cao, X.; Chan, C. W.; Sun, H.; Li, W. B.; Ge, J. et al. Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis. Sci. Adv. 2020, 6, eaax5785.
Cai, G. R.; Jiang, H. L. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angew. Chem., Int. Ed. 2017, 56, 563–567.
Kuang, X.; Ma, Y.; Su, H.; Zhang, J. N.; Dong, Y. B.; Tang, B. High-performance liquid chromatographic enantioseparation of racemic drugs based on homochiral metal-organic framework. Anal. Chem. 2014, 86, 1277–1281.
Nuzhdin, A. L.; Dybtsev, D. N.; Bryliakov, K. P.; Talsi, E. P.; Fedin, V. P. Enantioselective chromatographic resolution and one-pot synthesis of enantiomerically pure sulfoxides over a homochiral Zn-organic framework. J. Am. Chem. Soc. 2007, 129, 12958–12959.