AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Failure-analysis of carbon nanotubes and their extreme applications

Mingquan Zhu1,2Yunxiang Bai1,2( )Runyi Gao3Yajing Liu1,2Peng Zhang1Hui Zhang1,2Luqi Liu1,2Zhong Zhang1,2,3( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
Show Author Information

Graphical Abstract

This review examines the progress of the mechanical and electrical failure study of carbon nanotubes (CNTs) and their assemblies, thus providing a comprehensive guiding reference in the service of CNTs in different forms.

Abstract

The study of material failure is crucial for the design of engineering applications, as it can have significant social and economic impacts. Carbon nanotubes (CNTs), with their exceptional electrical, mechanical, and thermal properties, hold immense potential for a wide range of cutting-edge applications such as superstrong fiber, lightning strike protector, and even space elevator. This review provides an overview of the advancement in understanding the mechanical and electrical failure study of CNTs and their assemblies, serving as a comprehensive reference for utilizing CNTs in various forms. To begin, we emphasize the importance of studying material failure and provide a brief introduction to CNTs. Subsequently, we explore the mechanical and electrical failure characteristics of CNTs and their assemblies, along with notable examples of applications that utilize their failure-resistant properties, such as flywheel energy storage and lightning strike protection. Lastly, we present perspectives associated with analyzing CNT failure and its implications for extreme applications.

References

[1]

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

[2]

Qian, D.; Wagner, G. J.; Liu, W. K.; Yu, M. F.; Ruoff, R. S. Mechanics of carbon nanotubes. Appl. Mech. Rev. 2002, 55, 495–533.

[3]

Ruoff, R. S.; Qian, D.; Liu, W. K. Mechanical properties of carbon nanotubes: Theoretical predictions and experimental measurements. C. R. Phys. 2003, 4, 993–1008.

[4]

Bai, Y. X.; Shen, B. Y.; Zhang, S. L.; Zhu, Z. X.; Sun, S. L.; Gao, J.; Li, B. H.; Wang, Y.; Zhang, R. F.; Wei, F. Storage of mechanical energy based on carbon nanotubes with high energy density and power density. Adv. Mater. 2019, 31, 1800680.

[5]

Bai, Y. X.; Yue, H. J.; Wang, J.; Shen, B. Y.; Sun, S. L.; Wang, S. J.; Wang, H. D.; Li, X. D.; Xu, Z. P.; Zhang, R. F. et al. Super-durable ultralong carbon nanotubes. Science 2020, 369, 1104–1106.

[6]

Bai, Y. X.; Yue, H. J.; Zhang, R. F.; Qian, W. Z.; Zhang, Z.; Wei, F. Mechanical behavior of single and bundled defect-free carbon nanotubes. Acc. Mater. Res. 2021, 2, 998–1009.

[7]

Bai, Y. X.; Zhang, R. F.; Ye, X.; Zhu, Z. X.; Xie, H. H.; Shen, B. Y.; Cai, D. L.; Liu, B. F.; Zhang, C. X.; Jia, Z. et al. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol. 2018, 13, 589–595.

[8]

Zhang, X. H.; Lu, W. B.; Zhou, G. H.; Li, Q. W. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Adv. Mater. 2020, 32, 1902028.

[9]

Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; Ter Waarbeek, R. F.; De Jong, J. J.; Hoogerwerf, R. E. et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 2013, 339, 182–186.

[10]

De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

[11]

Chu, H. T.; Hu, X. H.; Wang, Z.; Mu, J. K.; Li, N.; Zhou, X. S.; Fang, S. L.; Haines, C. S.; Park, J. W.; Qin, S. et al. Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science 2021, 371, 494–498.

[12]

Wang, J. X.; Gao, D. C.; Lee, P. S. Recent progress in artificial muscles for interactive soft robotics. Adv. Mater. 2021, 33, 2003088.

[13]

Subramaniam, C.; Yamada, T.; Kobashi, K.; Sekiguchi, A.; Futaba, D. N.; Yumura, M.; Hata, K. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite. Nat. Commun. 2013, 4, 2202.

[14]

Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540–550.

[15]

Gates, B. D. Flexible electronics. Science 2009, 323, 1566–1567.

[16]

Veers, P.; Dykes, K.; Lantz, E.; Barth, S.; Bottasso, C. L.; Carlson, O.; Clifton, A.; Green, J.; Green, P.; Holttinen, H. et al. Grand challenges in the science of wind energy. Science 2019, 366, eaau2027.

[17]

Chakravarthi, D. K.; Khabashesku, V. N.; Vaidyanathan, R.; Blaine, J.; Yarlagadda, S.; Roseman, D.; Zeng, Q.; Barrera, E. V. Carbon fiber-bismaleimide composites filled with nickel-coated single-walled carbon nanotubes for lightning-strike protection. Adv. Funct. Mater. 2011, 21, 2527–2533.

[18]

Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

[19]

Asaadi, N.; Parhizkar, M.; Bidadi, H.; Aref, S. M.; Ghafouri, M. The effects of multiwall carbon nanotubes on the electrical characteristics of ZnO-based composites. J. Theor. Appl. Phys. 2020, 14, 329–337.

[20]

Edwards, B. C. Design and deployment of a space elevator. Acta Astronaut. 2000, 47, 735–744.

[21]

Yakobson, B. I.; Smalley, R. E. Fullerene nanotubes: C1,000,000 and beyond: Some unusual new molecules-long, hollow fibers with tantalizing electronic and mechanical properties-have joined diamonds and graphite in the carbon family. Am. Sci. 1997, 85, 324–337.

[22]

Bai, Y. X.; Zhu, M. Q.; Wang, S. J.; Gao, F.; Gao, R. Y.; Qu, Y. S.; Cui, X. W.; Wang, G. R.; Liu, L. Q.; Zhang, H. et al. Mechanism study of advanced lightning strike protection composite systems using a miniature tip discharge system. Compos. Part A Appl. Sci. Manuf. 2023, 167, 107394.

[23]

Hedlund, M.; Lundin, J.; De Santiago, J.; Abrahamsson, J.; Bernhoff, H. Flywheel energy storage for automotive applications. Energies 2015, 8, 10636–10663.

[24]

Yakobson, B. I.; Campbell, M. P.; Brabec, C. J.; Bernholc, J. High strain rate fracture and C-chain unraveling in carbon nanotubes. Comp. Mater. Sci. 1997, 8, 341–348.

[25]

Belytschko, T.; Xiao, S. P.; Schatz, G. C.; Ruoff, R. S. Atomistic simulations of nanotube fracture. Phys. Rev. B 2002, 65, 235430.

[26]

Wei, C. Y.; Cho, K.; Srivastava, D. Tensile strength of carbon nanotubes under realistic temperature and strain rate. Phys. Rev. B 2003, 67, 115407.

[27]
Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications; Elsevier: Kidlington, 1996.
[28]

Nardelli, M. B.; Yakobson, B. I.; Bernholc, J. Brittle and ductile behavior in carbon nanotubes. Phys. Rev. Lett. 1998, 81, 4656–4659.

[29]

Yakobson, B. I. Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes. Appl. Phys. Lett. 1998, 72, 918–920.

[30]

Huang, J. Y.; Chen, S.; Wang, Z. Q.; Kempa, K.; Wang, Y. M.; Jo, S. H.; Chen, G.; Dresselhaus, M. S.; Ren, Z. F. Superplastic carbon nanotubes. Nature 2006, 439, 281.

[31]

Nardelli, M. B.; Yakobson, B. I.; Bernholc, J. Mechanism of strain release in carbon nanotubes. Phys. Rev. B 1998, 57, R4277–R4280.

[32]

Samsonidze, G. G.; Samsonidze, G. G.; Yakobson, B. I. Kinetic theory of symmetry-dependent strength in carbon nanotubes. Phys. Rev. Lett. 2002, 88, 065501.

[33]

Dumitrica, T.; Hua, M.; Yakobson, B. I. Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc. Natl. Acad. Sci. USA 2006, 103, 6105–6109.

[34]

Yuan, Q. H.; Li, L.; Li, Q. S.; Ding, F. Effect of metal impurities on the tensile strength of carbon nanotubes: A theoretical study. J. Phys. Chem. C 2013, 117, 5470–5474.

[35]

Zhu, L. Y.; Wang, J. L.; Ding, F. The great reduction of a carbon nanotube’s mechanical performance by a few topological defects. ACS Nano 2016, 10, 6410–6415.

[36]

Yakobson, B. I.; Brabec, C. J.; Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 1996, 76, 2511–2514.

[37]

Lourie, O.; Cox, D. M.; Wagner, H. D. Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 1998, 81, 1638–1641.

[38]

Srivastava, D.; Menon, M.; Cho, K. Nanoplasticity of single-wall carbon nanotubes under uniaxial compression. Phys. Rev. Lett. 1999, 83, 2973–2976.

[39]
Yakobson, B. I.; Avouris, P. Mechanical properties of carbon nanotubes. In Carbon Nanotubes; Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P., Eds.; Springer: Berlin, 2001, pp 287–327.
[40]

Zhang, P. H.; Lammert, P. E.; Crespi, V. H. Plastic deformations of carbon nanotubes. Phys. Rev. Lett. 1998, 81, 5346–5349.

[41]

Zhang, P. H.; Crespi, V. H. Nucleation of carbon nanotubes without pentagonal rings. Phys. Rev. Lett. 1999, 83, 1791–1794.

[42]

Xin, H.; Han, Q.; Yao, X. H. Buckling and axially compressive properties of perfect and defective single-walled carbon nanotubes. Carbon 2007, 45, 2486–2495.

[43]

Iijima, S.; Brabec, C.; Maiti, A.; Bernholc, J. Structural flexibility of carbon nanotubes. J. Chem. Phys. 1996, 104, 2089–2092.

[44]

Falvo, M. R.; Clary, G. J.; Taylor II, R. M.; Chi, V.; Brooks, F. P. Jr.; Washburn, S.; Superfine, R. Bending and buckling of carbon nanotubes under large strain. Nature 1997, 389, 582–584.

[45]

Clauss, W.; Bergeron, D. J.; Johnson, A. T. Atomic resolution STM imaging of a twisted single-wall carbon nanotube. Phys. Rev. B 1998, 58, R4266–R4269.

[46]

Bernholc, J.; Brabec, C.; Nardelli, M. B.; Maiti, A.; Roland, C.; Yakobson, B. I. Theory of growth and mechanical properties of nanotubes. Appl. Phys. A 1998, 67, 39–46.

[47]

Knechtel, W. H.; Düsberg, G. S.; Blau, W. J.; Hernández, E.; Rubio, A. Reversible bending of carbon nanotubes using a transmission electron microscope. Appl. Phys. Lett. 1998, 73, 1961–1963.

[48]

Qian, D.; Liu, W. K.; Subramoney, S.; Ruoff, R. S. Effect of interlayer potential on mechanical deformation of multiwalled carbon nanotubes. J. Nanosci. Nanotechnol. 2003, 3, 185–191.

[49]

Salvetat, J. P.; Bonard, J. M.; Thomson, N. H.; Kulik, A. J.; Forró, L.; Benoit, W.; Zuppiroli, L. Mechanical properties of carbon nanotubes. Appl. Phys. A 1999, 69, 255–260.

[50]

Poncharal, P.; Wang, Z. L.; Ugarte, D.; De Heer, W. A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 1999, 283, 1513–1516.

[51]

Kutana, A.; Giapis, K. P. Transient deformation regime in bending of single-walled carbon nanotubes. Phys. Rev. Lett. 2006, 97, 245501.

[52]

Arroyo, M.; Belytschko, T. Nonlinear mechanical response and rippling of thick multiwalled carbon nanotubes. Phys. Rev. Lett. 2003, 91, 215505.

[53]

Yakobson, B. I.; Brabec, C. J.; Bernholc, J. Structural mechanics of carbon nanotubes: From continuum elasticity to atomistic fracture. J. Comput. Aided Mater. Des. 1996, 3, 173–182.

[54]

Chopra, N. G.; Benedict, L. X.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Fully collapsed carbon nanotubes. Nature 1995, 377, 135–138.

[55]

Qian, D.; Liu, W. K.; Ruoff, R. S. Load transfer mechanism in carbon nanotube ropes. Compos. Sci. Technol. 2003, 63, 1561–1569.

[56]

Pedrielli, A.; Dapor, M.; Gkagkas, K.; Taioli, S.; Pugno, N. M. Mechanical properties of twisted carbon nanotube bundles with carbon linkers from molecular dynamics simulations. Int. J. Mol. Sci. 2023, 24, 2473.

[57]

Huang, Y.; Wu, J.; Hwang, K. C. Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 2006, 74, 245413.

[58]

Wang, Y.; Wei, F.; Gu, G. S.; Yu, H. Agglomerated carbon nanotubes and its mass production in a fluidized-bed reactor. Phys. B: Cond. Matter. 2002, 323, 327–329.

[59]

Wang, Y.; Wei, F.; Luo, G. H.; Yu, H.; Gu, G. S. The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chem. Phys. Lett. 2002, 364, 568–572.

[60]

Wick, P.; Manser, P.; Limbach, L. K.; Dettlaff-Weglikowska, U.; Krumeich, F.; Roth, S.; Stark, W. J.; Bruinink, A. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 2007, 168, 121–131.

[61]

Wei, F.; Zhang, Q.; Qian, W. Z.; Yu, H.; Wang, Y.; Luo, G. H.; Xu, G. H.; Wang, D. Z. The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: A multiscale space-time analysis. Powd. Technol. 2008, 183, 10–20.

[62]

Chhowalla, M.; Teo, K. B. K.; Ducati, C.; Rupesinghe, N. L.; Amaratunga, G. A. J.; Ferrari, A. C.; Roy, D.; Robertson, J.; Milne, W. I. Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 2001, 90, 5308–5317.

[63]

Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegal, M. P.; Provencio, P. N. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 1998, 282, 1105–1107.

[64]

Choi, Y. C.; Shin, Y. M.; Lee, Y. H.; Lee, B. S.; Park, G. S.; Choi, W. B.; Lee, N. S.; Kim, J. M. Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 2000, 76, 2367–2369.

[65]

Jo, S. H.; Tu, Y.; Huang, Z. P.; Carnahan, D. L.; Wang, D. Z.; Ren, Z. F. Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Appl. Phys. Lett. 2003, 82, 3520–3522.

[66]

Hongo, H.; Nihey, F.; Ochiai, Y. Horizontally directional single-wall carbon nanotubes grown by chemical vapor deposition with a local electric field. J. Appl. Phys. 2007, 101, 024325.

[67]

Rao, F. B.; Zhou, Y. X.; Li, T.; Wang, Y. L. Horizontally aligned single-walled carbon nanotubes can bridge wide trenches and climb high steps. Chem. Eng. J. 2010, 157, 590–597.

[68]

Orofeo, C. M.; Ago, H.; Ikuta, T.; Takahasi, K.; Tsuji, M. Growth of horizontally aligned single-walled carbon nanotubes on anisotropically etched silicon substrate. Nanoscale 2010, 2, 1708–1714.

[69]

Hu, Y.; Kang, L. X.; Zhao, Q. C.; Zhong, H.; Zhang, S. C.; Yang, L. W.; Wang, Z. Q.; Lin, J. J.; Li, Q. W.; Zhang, Z. Y. et al. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nat. Commun. 2015, 6, 6099.

[70]

Reina, A.; Hofmann, M.; Zhu, D.; Kong, J. Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition. J. Phys. Chem. C 2007, 111, 7292–7297.

[71]

An, J. N.; Zhan, Z. Y.; Krishna, S. V. H.; Zheng, L. X. Growth condition mediated catalyst effects on the density and length of horizontally aligned single-walled carbon nanotube arrays. Chem. Eng. J. 2014, 237, 16–22.

[72]

Xie, H. H.; Zhang, R. F.; Zhang, Y. Y.; Zhang, W. L.; Jian, M. Q.; Wang, C. Y.; Wang, Q.; Wei, F. Graphene/graphite sheet assisted growth of high-areal-density horizontally aligned carbon nanotubes. Chem. Commun. 2014, 50, 11158–11161.

[73]

Inoue, T.; Hasegawa, D.; Badar, S.; Aikawa, S.; Chiashi, S.; Maruyama, S. Effect of gas pressure on the density of horizontally aligned single-walled carbon nanotubes grown on quartz substrates. J. Phys. Chem. C 2013, 117, 11804–11810.

[74]

Ago, H.; Nakamura, Y.; Ogawa, Y.; Tsuji, M. Combinatorial catalyst approach for high-density growth of horizontally aligned single-walled carbon nanotubes on sapphire. Carbon 2011, 49, 176–186.

[75]

Inoue, T.; Hasegawa, D.; Chiashi, S.; Maruyama, S. Chirality analysis of horizontally aligned single-walled carbon nanotubes: Decoupling populations and lengths. J. Mater. Chem. A 2015, 3, 15119–15123.

[76]

Liu, H. P.; Takagi, D.; Chiashi, S.; Homma, Y. The controlled growth of horizontally aligned single-walled carbon nanotube arrays by a gas flow process. Nanotechnology 2009, 20, 345604.

[77]

Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680.

[78]

Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975.

[79]

Salvetat, J. P.; Kulik, A. J.; Bonard, J. M.; Briggs, G. A. D.; Stöckli, T.; Méténier, K.; Bonnamy, S.; Béguin, F.; Burnham, N. A.; Forró, L. Elastic modulus of ordered and disordered multiwalled carbon nanotubes. 3.0.CO;2-J">Adv. Mater. 1999, 11, 161–165.

[80]

Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640.

[81]

Wu, Y.; Huang, M. Y.; Wang, F.; Huang, X. M. H.; Rosenblatt, S.; Huang, L. M.; Yan, H. G.; O’Brien, S. P.; Hone, J.; Heinz, T. F. Determination of the Young’s modulus of structurally defined carbon nanotubes. Nano Lett. 2008, 8, 4158–4161.

[82]

Wei, X. L.; Chen, Q.; Xu, S. Y.; Peng, L. M.; Zuo, J. M. Beam to string transition of vibrating carbon nanotubes under axial tension. Adv. Funct. Mater. 2009, 19, 1753–1758.

[83]

Chang, C. C.; Hsu, I. K.; Aykol, M.; Hung, W. H.; Chen, C. C.; Cronin, S. B. A new lower limit for the ultimate breaking strain of carbon nanotubes. ACS Nano 2010, 4, 5095–5100.

[84]

Wei, X. L.; Chen, Q.; Peng, L. M.; Cui, R. L.; Li, Y. Tensile loading of double-walled and triple-walled carbon nanotubes and their mechanical properties. J. Phys. Chem. C 2009, 113, 17002–17005.

[85]

Ganesan, Y.; Peng, C.; Lu, Y.; Ci, L.; Srivastava, A.; Ajayan, P. M.; Lou, J. Effect of nitrogen doping on the mechanical properties of carbon nanotubes. ACS Nano 2010, 4, 7637–7643.

[86]

Walters, D. A.; Ericson, L. M.; Casavant, M. J.; Liu, J.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 1999, 74, 3803–3805.

[87]

Pan, Z. W.; Xie, S. S.; Lu, L.; Chang, B. H.; Sun, L. F.; Zhou, W. Y.; Wang, G.; Zhang, D. L. Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Appl. Phys. Lett. 1999, 74, 3152–3154.

[88]

Li, F.; Cheng, H. M.; Bai, S.; Su, G.; Dresselhaus, M. S. Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl. Phys. Lett. 2000, 77, 3161–3163.

[89]

Yu, M. F.; Files, B. S.; Arepalli, S.; Ruoff, R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84, 5552–5555.

[90]

Demczyk, B. G.; Wang, Y. M.; Cumings, J.; Hetman, M.; Han, W.; Zettl, A.; Ritchie, R. O. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A 2002, 334, 173–178.

[91]

Cronin, S. B.; Swan, A. K.; Unlü, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Measuring the uniaxial strain of individual single-wall carbon nanotubes: Resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes. Phys. Rev. Lett. 2004, 93, 167401.

[92]

Olofsson, N.; Ek-Weis, J.; Eriksson, A.; Idda, T.; Campbell, E. E. B. Determination of the effective Young’s modulus of vertically aligned carbon nanotube arrays: A simple nanotube-based varactor. Nanotechnology 2009, 20, 385710.

[93]

Peng, B.; Locascio, M.; Zapol, P.; Li, S. Y.; Mielke, S. L.; Schatz, G. C.; Espinosa, H. D. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 2008, 3, 626–631.

[94]

Charlier, J. C. Defects in carbon nanotubes. Acc. Chem. Res. 2002, 35, 1063–1069.

[95]

Choi, H. J.; Ihm, J.; Louie, S. G.; Cohen, M. L. Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys. Rev. Lett. 2000, 84, 2917–2920.

[96]

Krasheninnikov, A. V.; Nordlund, K.; Sirviö, M.; Salonen, E.; Keinonen, J. Formation of ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes. Phys. Rev. B 2001, 63, 245405.

[97]

Sammalkorpi, M.; Krasheninnikov, A.; Kuronen, A.; Nordlund, K.; Kaski, K. Mechanical properties of carbon nanotubes with vacancies and related defects. Phys. Rev. B 2004, 70, 245416.

[98]

Chico, L.; Benedict, L. X.; Louie, S. G.; Cohen, M. L. Quantum conductance of carbon nanotubes with defects. Phys. Rev. B 1996, 54, 2600–2606.

[99]

Charlier, J. C.; Ebbesen, T. W.; Lambin, P. Structural and electronic properties of pentagon–heptagon pair defects in carbon nanotubes. Phys. Rev. B 1996, 53, 11108–11113.

[100]

Zhang, R. F.; Wen, Q.; Qian, W. Z.; Su, D. S.; Zhang, Q.; Wei, F. Superstrong ultralong carbon nanotubes for mechanical energy storage. Adv. Mater. 2011, 23, 3387–3391.

[101]

Cao, A. Y.; Dickrell, P. L.; Sawyer, W. G.; Ghasemi-Nejhad, M. N.; Ajayan, P. M. Super-compressible foamlike carbon nanotube films. Science 2005, 310, 1307–1310.

[102]

Suhr, J.; Victor, P.; Ci, L.; Sreekala, S.; Zhang, X.; Nalamasu, O.; Ajayan, P. M. Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. Nat. Nanotechnol. 2007, 2, 417–421.

[103]

Kim, K. H.; Oh, Y.; Islam, M. F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotechnol. 2012, 7, 562–566.

[104]

Xu, M.; Futaba, D. N.; Yamada, T.; Yumura, M.; Hata, K. Carbon nanotubes with temperature-invariant viscoelasticity from −196 to 1000 C. Science 2010, 330, 1364–1368.

[105]

Ren, Y.; Li, F.; Cheng, H. M.; Liao, K. Tension–tension fatigue behavior of unidirectional single-walled carbon nanotube reinforced epoxy composite. Carbon 2003, 41, 2177–2179.

[106]

Ma, G.; Ren, Y.; Guo, J.; Xiao, T.; Li, F.; Cheng, H. M.; Zhou, Z. R.; Liao, K. How long can single-walled carbon nanotube ropes last under static or dynamic fatigue. Appl. Phys. Lett. 2008, 92, 083105.

[107]

Xu, F.; Mo, X. L.; Wan, S.; Jiang, C. Q.; Hao, H. W.; Li, L. M. High-performance flexural fatigue of carbon nanotube yarns. Chin. Sci. Bull. 2014, 59, 3831–3834.

[108]

Salvetat, J. P.; Briggs, G. A. D.; Bonard, J. M.; Bacsa, R. R.; Kulik, A. J.; Stöckli, T.; Burnham, N. A.; Forró, L. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 1999, 82, 944–947.

[109]

Xie, S. S.; Li, W. Z.; Pan, Z. W.; Chang, B. H.; Sun, L. F. Mechanical and physical properties on carbon nanotube. J. Phys. Chem. Solids 2000, 61, 1153–1158.

[110]

Filleter, T.; Bernal, R.; Li, S.; Espinosa, H. D. Ultrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles. Adv. Mater. 2011, 23, 2855–2860.

[111]

Vilatela, J. J.; Elliott, J. A.; Windle, A. H. A model for the strength of yarn-like carbon nanotube fibers. ACS Nano 2011, 5, 1921–1927.

[112]

Zhang, X. B.; Jiang, K. L.; Feng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T. H.; Li, Q. Q.; Fan, S. S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505–1510.

[113]

Koziol, K.; Vilatela, J.; Moisala, A.; Motta, M.; Cunniff, P.; Sennett, M.; Windle, A. High-performance carbon nanotube fiber. Science 2007, 318, 1892–1895.

[114]

Beese, A. M.; Wei, X. D.; Sarkar, S.; Ramachandramoorthy, R.; Roenbeck, M. R.; Moravsky, A.; Ford, M.; Yavari, F.; Keane, D. T.; Loutfy, R. O. et al. Key factors limiting carbon nanotube yarn strength: Exploring processing-structure-property relationships. ACS Nano 2014, 8, 11454–11466.

[115]

Ericson, L. M.; Fan, H.; Peng, H. Q.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y. H.; Booker, R.; Vavro, J.; Guthy, C. et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science 2004, 305, 1447–1450.

[116]

Dalton, A. B.; Collins, S.; Muñoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G.; Baughman, R. H. Super-tough carbon-nanotube fibres. Nature 2003, 423, 703.

[117]

Yakobson, B. I.; Samsonidze, G.; Samsonidze, G. G. Atomistic theory of mechanical relaxation in fullerene nanotubes. Carbon 2000, 38, 1675–1680.

[118]

Daniels, H. E. The statistical theory of the strength of bundles of threads. I. Proc. Roy. Soc. A Math. Phys. Sci. 1997, 183, 405–435.

[119]

Zhang, X. F.; Li, Q. W.; Holesinger, T. G.; Arendt, P. N.; Huang, J. Y.; Kirven, P. D.; Clapp, T. G.; DePaula, R. F.; Liao, X. Z.; Zhao, Y. H. et al. Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv. Mater. 2007, 19, 4198–4201.

[120]

Minus, M.; Kumar, S. The processing, properties, and structure of carbon fibers. JOM 2005, 57, 52–58.

[121]

Chae, H. G.; Kumar, S. Rigid-rod polymeric fibers. J. Appl. Polym. Sci. 2006, 100, 791–802.

[122]

Li, Y. L.; Kinloch, I. A.; Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 2004, 304, 276–278.

[123]

Jiang, K. L.; Li, Q. Q.; Fan, S. S. Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.

[124]

Vigolo, B.; Penicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000, 290, 1331–1334.

[125]

Zhang, S. J.; Koziol, K. K. K.; Kinloch, I. A.; Windle, A. H. Macroscopic fibers of well-aligned carbon nanotubes by wet spinning. Small 2008, 4, 1217–1222.

[126]

Dalton, A. B.; Collins, S.; Razal, J.; Munoz, E.; Ebron, V. H.; Kim, B. G.; Coleman, J. N.; Ferraris, J. P.; Baughman, R. H. Continuous carbon nanotube composite fibers: Properties, potential applications, and problems. J. Mater. Chem. 2004, 14, 1–3.

[127]
Wang, A. L. Spinning methods for carbon nanotube fibers. Ph. D. Dissertation, University of Cincinnati, Cincinnati, OH, USA, 2014.
[128]

Kozlov, M. E.; Capps, R. C.; Sampson, W. M.; Ebron, V. H.; Ferraris, J. P.; Baughman, R. H. Spinning solid and hollow polymer-free carbon nanotube fibers. Adv. Mater. 2005, 17, 614–617.

[129]

Steinmetz, J.; Glerup, M.; Paillet, M.; Bernier, P.; Holzinger, M. Production of pure nanotube fibers using a modified wet-spinning method. Carbon 2005, 43, 2397–2400.

[130]

Zhang, Y. Y.; Zou, G. F.; Doorn, S. K.; Htoon, H.; Stan, L.; Hawley, M. E.; Sheehan, C. J.; Zhu, Y. T.; Jia, Q. X. Tailoring the morphology of carbon nanotube arrays: From spinnable forests to undulating foams. ACS Nano 2009, 3, 2157–2162.

[131]

Huynh, C. P.; Hawkins, S. C. Understanding the synthesis of directly spinnable carbon nanotube forests. Carbon 2010, 48, 1105–1115.

[132]

Zhang, M.; Atkinson, K. R.; Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2004, 306, 1358–1361.

[133]

Nakayama, Y. Synthesis, nanoprocessing, and yarn application of carbon nanotubes. Jpn. J. Appl. Phys. 2008, 47, 8149–8156.

[134]

Liu, K.; Sun, Y. H.; Zhou, R. F.; Zhu, H. Y.; Wang, J. P.; Liu, L.; Fan, S. S.; Jiang, K. L. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology 2010, 21, 045708.

[135]

Tran, C. D.; Humphries, W.; Smith, S. M.; Huynh, C.; Lucas, S. Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process. Carbon 2009, 47, 2662–2670.

[136]

Zhang, X. F.; Li, Q. W.; Tu, Y.; Li, Y.; Coulter, J. Y.; Zheng, L. X.; Zhao, Y. H.; Jia, Q. X.; Peterson, D. E.; Zhu, Y. T. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. Small 2007, 3, 244–248.

[137]

Zhu, C.; Cheng, C.; He, Y. H.; Wang, L.; Wong, T. L.; Fung, K. K.; Wang, N. A self-entanglement mechanism for continuous pulling of carbon nanotube yarns. Carbon 2011, 49, 4996–5001.

[138]

Wang, J. N.; Luo, X. G.; Wu, T.; Chen, Y. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat. Commun. 2014, 5, 3848.

[139]

Zhu, H. W.; Xu, C. L.; Wu, D. H.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Direct synthesis of long single-walled carbon nanotube strands. Science 2002, 296, 884–886.

[140]

Motta, M.; Li, Y. L.; Kinloch, I.; Windle, A. Mechanical properties of continuously spun fibers of carbon nanotubes. Nano Lett. 2005, 5, 1529–1533.

[141]

Motta, M.; Moisala, A.; Kinloch, I. A.; Windle, A. H. High performance fibres from “dog bone” carbon nanotubes. Adv. Mater. 2007, 19, 3721–3726.

[142]

Xu, W.; Chen, Y.; Zhan, H.; Wang, J. N. High-strength carbon nanotube film from improving alignment and densification. Nano Lett. 2016, 16, 946–952.

[143]

Lee, J.; Lee, D. M.; Jung, Y.; Park, J.; Lee, H. S.; Kim, Y. K.; Park, C. R.; Jeong, H. S.; Kim, S. M. Direct spinning and densification method for high-performance carbon nanotube fibers. Nat. Commun. 2019, 10, 2962.

[144]

Lee, D. M.; Park, J.; Lee, J.; Lee, S. H.; Kim, S. H.; Kim, S. M.; Jeong, H. S. Improving mechanical and physical properties of ultra-thick carbon nanotube fiber by fast swelling and stretching process. Carbon 2021, 172, 733–741.

[145]

Zhang, X.; De Volder, M.; Zhou, W. B.; Issman, L.; Wei, X. J.; Kaniyoor, A.; Portas, J. T.; Smail, F.; Wang, Z. B.; Wang, Y. C. et al. Simultaneously enhanced tenacity, rupture work, and thermal conductivity of carbon nanotube fibers by raising effective tube portion. Sci. Adv. 2022, 8, eabq3515.

[146]

Kanagaraj, S.; Varanda, F. R.; Zhil’tsova, T. V.; Oliveira, M. S. A.; Simões, J. A. O. Mechanical properties of high density polyethylene/carbon nanotube composites. Compos. Sci. Technol. 2007, 67, 3071–3077.

[147]

Tang, L. C.; Zhang, H.; Han, J. H.; Wu, X. P.; Zhang, Z. Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes. Compos. Sci. Technol. 2011, 72, 7–13.

[148]

Sahoo, N. G.; Cheng, H. K. F.; Cai, J. W.; Li, L.; Chan, S. H.; Zhao, J. H.; Yu, S. Z. Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods. Mater. Chem. Phys. 2009, 117, 313–320.

[149]

Luo, J. J.; Wen, Y. Y.; Jia, X. Z.; Lei, X. D.; Gao, Z. F.; Jian, M. Q.; Xiao, Z. H.; Li, L. Y.; Zhang, J. W.; Li, T. et al. Fabricating strong and tough aramid fibers by small addition of carbon nanotubes. Nat. Commun. 2023, 14, 3019.

[150]

Chen, Y. L.; Liu, B.; He, X. Q.; Huang, Y.; Hwang, K. C. Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites. Compos. Sci. Technol. 2010, 70, 1360–1367.

[151]

Cha, J.; Kim, J.; Ryu, S.; Hong, S. H. Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets. Compos. Part B: Eng. 2019, 162, 283–288.

[152]

Song, L.; Zhang, H.; Zhang, Z.; Xie, S. S. Processing and performance improvements of SWNT paper reinforced PEEK nanocomposites. Compos. Part A: Appl. Sci. Manuf. 2007, 38, 388–392.

[153]

Koirala, P.; Van De Werken, N.; Lu, H. B.; Baughman, R. H.; Ovalle-Robles, R.; Tehrani, M. Using ultra-thin interlaminar carbon nanotube sheets to enhance the mechanical and electrical properties of carbon fiber reinforced polymer composites. Compos. Part B: Eng. 2021, 216, 108842.

[154]
Holm, S. R. Modelling and optimization of a permanent-magnet machine in a flywheel. Ph. D. Dissertation, Technische Universiteit Delft, Delft, The Netherlands, 2003.
[155]

Hebner, R.; Beno, J.; Walls, A. Flywheel batteries come around again. IEEE Spectr. 2002, 39, 46–51.

[156]
Pei, Y. L.; Cavagnino, A.; Vaschetto, S.; Chai, F.; Tenconi, A. Flywheel energy storage systems for power systems application. In 2017 6th International Conference on Clean Electrical Power (ICCEP), Santa Margherita Ligure, Italy, 2017, pp 492–501.
[157]
Lazarewicz, M. L.; Rojas, A. Grid frequency regulation by recycling electrical energy in flywheels. In IEEE Power Engineering Society General Meeting, 2004, Denver, CO, USA, 2004, pp 2038–2042.
[158]
Li, N.; Hedayati, M.; Hedman, K. W. Utilizing flywheels to provide regulation services for systems with renewable resources. In 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 2015, pp 1–5.
[159]
Zhang, F.; Tokombayev, M.; Song, Y. H.; Gross, G. Effective flywheel energy storage (FES) offer strategies for frequency regulation service provision. In 2014 Power Systems Computation Conference, Wroclaw, Poland, 2014, pp 1–7.
[160]
Babuska, V.; Beatty, S. M.; DeBlonk, B. J.; Fausz, J. A review of technology developments in flywheel attitude control and energy transmission systems. In 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No. 04TH8720), Big Sky, MT, USA, 2004, pp 2784–2800.
[161]
Wagner, R. C.; Boyle, D. R.; Decker, K. Commercialization of flywheel energy storage technology on the international space station. In IECEC '02. 2002 37th Intersociety Energy Conversion Engineering Conference, 2002, Washington, DC, USA, 2004, pp 146–150.
[162]

Shigematsu, T. Redox flow battery for energy storage. SEI Techn. Rev. 2011, 73, 4–13.

[163]
Inage, S. I. Prospects for large-scale energy storage in decarbonised power grids. IEA: Paris, 2009.
[164]
Lazarewicz, M. L.; Ryan, T. M. Integration of flywheel-based energy storage for frequency regulation in deregulated markets. In IEEE PES General Meeting, Minneapolis, MN, USA, 2010, pp 1–6.
[165]
Byrne, R. H.; Concepcion, R. J.; Silva-Monroy, C. A. Estimating potential revenue from electrical energy storage in PJM. In 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 2016, pp 1–5.
[166]
Cleary, J.; Lazarewicz, M. L.; Nelson, L.; Rounds, R.; Arsenault, J. Interconnection study: 5MW of Beacon power flywheels on 23 kV line—Tyngsboro, MA. In 2010 IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply, Waltham, MA, USA, 2010, pp 285–291.
[167]

Bolund, B.; Bernhoff, H.; Leijon, M. Flywheel energy and power storage systems. Renew. Sustainable Energy Rev. 2007, 11, 235–258.

[168]

Sabihuddin, S.; Kiprakis, A. E.; Mueller, M. A numerical and graphical review of energy storage technologies. Energies 2014, 8, 172–216.

[169]

Luo, X.; Wang, J. H.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536.

[170]

Mousavi, G. S. M.; Faraji, F.; Majazi, A.; Al-Haddad, K. A comprehensive review of Flywheel Energy Storage System technology. Renew. Sustainable Energy Rev. 2017, 67, 477–490.

[171]
Peña-Alzola, R.; Sebastián, R.; Quesada, J.; Colmenar, A. Review of flywheel based energy storage systems. In 2011 International Conference on Power Engineering, Energy and Electrical Drives, Malaga, Spain, 2011, pp 1–6.
[172]
Eckroad, S.; Gyuk, I. EPRI-DOE Handbook of Energy Storage for Transmission & Distribution Applications; Electric Power Research Institute: California, 2003.
[173]
Beardsall, J. C.; Gould, C. A.; Al-Tai, M. Energy storage systems: A review of the technology and its application in power systems. In 2015 50th International Universities Power Engineering Conference (UPEC), Stoke on Trent, UK, 2015, pp 1–6.
[174]
Genta, G. Kinetic Energy Storage: Theory and Practice of Advanced Flywheel Systems; Butterworth-Heinemann: Cambridge, 2014.
[175]

Lu, W. B.; Zu, M.; Byun, J. H.; Kim, B. S.; Chou, T. W. State of the art of carbon nanotube fibers: Opportunities and challenges. Adv. Mater. 2012, 24, 1805–1833.

[176]

Luo, X. G.; Liu, Z. Y.; Xu, B.; Yu, D. L.; Tian, Y. J.; Wang, H. T.; He, J. L. Compressive strength of diamond from first-principles calculation. J. Phys. Chem. C 2010, 114, 17851–17853.

[177]

Aanstoos, T. A.; Kajs, J. P.; Brinkman, W. G.; Liu, H. P.; Ouroua, A.; Hayes, R. J.; Hearn, C.; Sarjeant, J.; Gill, H. High voltage stator for a flywheel energy storage system. IEEE Trans. Magn. 2001, 37, 242–247.

[178]
Linden, D. Handbook of Batteries; Elsevier Science, 1995, 70, 71.
[179]

Kim, Y. A.; Muramatsu, H.; Hayashi, T.; Endo, M.; Terrones, M.; Dresselhaus, M. S. Thermal stability and structural changes of double-walled carbon nanotubes by heat treatment. Chem. Phys. Lett. 2004, 398, 87–92.

[180]

Telling, R. H.; Pickard, C. J.; Payne, M. C.; Field, J. E. Theoretical strength and cleavage of diamond. Phys. Rev. Lett. 2000, 84, 5160–5163.

[181]

Shenderova, O.; Brenner, D.; Ruoff, R. S. Would diamond nanorods be stronger than fullerene nanotubes. Nano Lett. 2003, 3, 805–809.

[182]

Wang, X.; Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Pasquali, M.; Kono, J. High-ampacity power cables of tightly-packed and aligned carbon nanotubes. Adv. Funct. Mater. 2014, 24, 3241–3249.

[183]

Mokry, G.; Pozuelo, J.; Vilatela, J. J.; Sanz, J.; Baselga, J. High ampacity carbon nanotube materials. Nanomaterials (Basel) 2019, 9, 383.

[184]
Fink, D. G.; Beaty, H. W. Standard Handbook for Electrical Engineers, 11th ed.; McGraw-Hill Companies: New York, 1978.
[185]

Preece, W. H. IV. On the heating effects of electric currents. No. III. Proc. Roy. Soc. London 1888, 44, 109–111.

[186]

Huntington, H. B.; Grone, A. R. Current-induced marker motion in gold wires. J. Phys. Chem. Solids 1961, 20, 76–87.

[187]

Lloyd, J. R. Electromigration failure. J. Appl. Phys. 1991, 69, 7601–7604.

[188]

McCusker, N. D.; Gamble, H. S.; Armstrong, B. M. Surface electromigration in copper interconnects. Microelectron. Reliab. 2000, 40, 69–76.

[189]

Li, P. C.; Young, T. K. Electromigration: The time bomb in deep-submicron ICs. IEEE Spectr. 1996, 33, 75–78.

[190]

Lloyd, J. R.; Clement, J. J. Electromigration in copper conductors. Thin Solid Films 1995, 262, 135–141.

[191]

Patil, J. J.; Chae, W. H.; Trebach, A.; Carter, K. J.; Lee, E.; Sannicolo, T.; Grossman, J. C. Failing forward: Stability of transparent electrodes based on metal nanowire networks. Adv. Mater. 2021, 33, 2004356.

[192]

Zhang, Y.; Khanbareh, H.; Roscow, J.; Pan, M.; Bowen, C.; Wan, C. Y. Self-healing of materials under high electrical stress. Matter 2020, 3, 989–1008.

[193]

Bulmer, J. S.; Kaniyoor, A.; Elliott, J. A. A meta-analysis of conductive and strong carbon nanotube materials. Adv. Mater. 2021, 33, 2008432.

[194]

Collins, P. G.; Hersam, M.; Arnold, M.; Martel, R.; Avouris, P. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 2001, 86, 3128–3131.

[195]

Dai, H. J.; Wong, E. W.; Lieber, C. M. Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes. Science 1996, 272, 523–526.

[196]

Frank, S.; Poncharal, P.; Wang, Z. L.; De Heer, W. A. Carbon nanotube quantum resistors. Science 1998, 280, 1744–1746.

[197]

Huang, J. Y.; Chen, S.; Jo, S. H.; Wang, Z.; Han, D. X.; Chen, G.; Dresselhaus, M. S.; Ren, Z. F. Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwall carbon nanotubes. Phys. Rev. Lett. 2005, 94, 236802.

[198]

Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 2001, 79, 1172–1174.

[199]

Yao, Z.; Kane, C. L.; Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 2000, 84, 2941–2944.

[200]

Park, J. G.; Li, S.; Liang, R.; Fan, X. Y.; Zhang, C.; Wang, B. The high current-carrying capacity of various carbon nanotube-based buckypapers. Nanotechnology 2008, 19, 185710.

[201]

Radosavljević, M.; Lefebvre, J.; Johnson, A. T. High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes. Phys. Rev. B 2001, 64, 241307.

[202]

Suzuki, M.; Ominami, Y.; Ngo, Q.; Yang, C. Y.; Cassell, A. M.; Li, J. Current-induced breakdown of carbon nanofibers. J. Appl. Phys. 2007, 101, 114307.

[203]

Murali, R.; Yang, Y. X.; Brenner, K.; Beck, T.; Meindl, J. D. Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 2009, 94, 243114.

[204]

Song, L.; Toth, G.; Wei, J. Q.; Liu, Z.; Gao, W.; Ci, L.; Vajtai, R.; Endo, M.; Ajayan, P. M. Sharp burnout failure observed in high current-carrying double-walled carbon nanotube fibers. Nanotechnology 2012, 23, 015703.

[205]

Zhao, J.; Sun, H. Y.; Dai, S.; Wang, Y.; Zhu, J. Electrical breakdown of nanowires. Nano Lett. 2011, 11, 4647–4651.

[206]

Liu, P.; Hu, D. C. M.; Tran, T. Q.; Jewell, D.; Duong, H. M. Electrical property enhancement of carbon nanotube fibers from post treatments. Colloids Surf. A Physicochem. Eng. Aspects 2016, 509, 384–389.

[207]

Cress, C. D.; Ganter, M. J.; Schauerman, C. M.; Soule, K.; Rossi, J. E.; Lawlor, C. C.; Puchades, I.; Ubnoske, S. M.; Bucossi, A. R.; Landi, B. J. Carbon nanotube wires with continuous current rating exceeding 20 amperes. J. Appl. Phys. 2017, 122, 025101.

[208]

Soule, K. J.; Lawlor, C. C.; Bucossi, A. R.; Cress, C. D.; Puchades, I.; Landi, B. J. Sustaining enhanced electrical conductivity in KAuBr4-doped carbon nanotube wires at high current densities. ACS Appl. Nano Mater. 2019, 2, 7340–7349.

[209]

Gspann, T. S.; Kaniyoor, A.; Tan, W.; Kloza, P. A.; Bulmer, J. S.; Mizen, J.; Divitini, G.; Terrones, J.; Tune, D.; Cook, J. D. et al. Catalyst-mediated enhancement of carbon nanotube textiles by laser irradiation: Nanoparticle sweating and bundle alignment. Catalysts 2021, 11, 368.

[210]

Tokunaga, T.; Hayashi, Y.; Iijima, T.; Uesugi, Y.; Unten, M.; Sasaki, K.; Yamamoto, T. In-situ observation of carbon nanotube yarn during voltage application. Micron 2015, 74, 30–34.

[211]
Shukla, A.; Ravichandran, G.; Rajapakse, Y. D. S. Dynamic Failure of Materials and Structures; Springer: New York, 2010.
[212]

Coakley, J.; Higginbotham, A.; McGonegle, D.; Ilavsky, J.; Swinburne, T. D.; Wark, J. S.; Rahman, K. M.; Vorontsov, V. A.; Dye, D.; Lane, T. J. et al. Femtosecond quantification of void evolution during rapid material failure. Sci. Adv. 2020, 6, eabb4434.

[213]

Nguyen, N. T. C.; Asghari-Rad, P.; Sathiyamoorthi, P.; Zargaran, A.; Lee, C. S.; Kim, H. S. Ultrahigh high-strain-rate superplasticity in a nanostructured high-entropy alloy. Nat. Commun. 2020, 11, 2736.

[214]

Palumbo, F.; Wen, C.; Lombardo, S.; Pazos, S.; Aguirre, F.; Eizenberg, M.; Hui, F.; Lanza, M. A review on dielectric breakdown in thin dielectrics: Silicon dioxide, high-k, and layered dielectrics. Adv. Funct. Mater. 2020, 30, 1900657.

[215]

Lekawa-Raus, A.; Patmore, J.; Kurzepa, L.; Bulmer, J.; Koziol, K. Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv. Funct. Mater. 2014, 24, 3661–3682.

[216]

Bai, Y. X.; Zhu, M. Q.; Wang, S. J.; Liu, L. Q.; Zhang, Z. Dynamic electrical failure of carbon nanotube ribbons. Carbon 2023, 202, 425–431.

[217]

Kamiyama, S.; Hirano, Y.; Okada, T.; Ogasawara, T. Lightning strike damage behavior of carbon fiber reinforced epoxy, bismaleimide, and polyetheretherketone composites. Compos. Sci. Technol. 2018, 161, 107–114.

[218]

Guo, Y. L.; Xu, Y. Z.; Wang, Q. L.; Dong, Q.; Yi, X. S.; Jia, Y. X. Eliminating lightning strike damage to carbon fiber composite structures in zone 2 of aircraft by Ni-coated carbon fiber nonwoven veils. Compos. Sci. Technol. 2019, 169, 95–102.

[219]

Guo, Y. L.; Xu, Y. Z.; Zhang, L. A.; Wei, X. T.; Dong, Q.; Yi, X. S.; Jia, Y. X. Implementation of fiberglass in carbon fiber composites as an isolation layer that enhances lightning strike protection. Compos. Sci. Technol. 2019, 174, 117–124.

[220]

Zhang, J. K.; Zhang, X. L.; Cheng, X. Q.; Hei, Y.; Xing, L. Y.; Li, Z. B. Lightning strike damage on the composite laminates with carbon nanotube films: Protection effect and damage mechanism. Compos. Part B: Eng. 2019, 168, 342–352.

[221]

Xia, Q. S.; Mei, H.; Zhang, Z. C.; Liu, Y. X.; Liu, Y. J.; Leng, J. S. Fabrication of the silver modified carbon nanotube film/carbon fiber reinforced polymer composite for the lightning strike protection application. Compos. Part B: Eng. 2020, 180, 107563.

[222]

Kumar, V.; Yokozeki, T.; Okada, T.; Hirano, Y.; Goto, T.; Takahashi, T.; Hassen, A. A.; Ogasawara, T. Polyaniline-based all-polymeric adhesive layer: An effective lightning strike protection technology for high residual mechanical strength of CFRPs. Compos. Sci. Technol. 2019, 172, 49–57.

[223]

Hirano, Y.; Yokozeki, T.; Ishida, Y.; Goto, T.; Takahashi, T.; Qian, D. N.; Ito, S.; Ogasawara, T.; Ishibashi, M. Lightning damage suppression in a carbon fiber-reinforced polymer with a polyaniline-based conductive thermoset matrix. Compos. Sci. Technol. 2016, 127, 1–7.

[224]

Gou, J. H.; Tang, Y.; Liang, F.; Zhao, Z. F.; Firsich, D.; Fielding, J. Carbon nanofiber paper for lightning strike protection of composite materials. Compos. Part B: Eng. 2010, 41, 192–198.

[225]

Wang, B.; Duan, Y. G.; Xin, Z. B.; Yao, X. L.; Abliz, D.; Ziegmann, G. Fabrication of an enriched graphene surface protection of carbon fiber/epoxy composites for lightning strike via a percolating-assisted resin film infusion method. Compos. Sci. Technol. 2018, 158, 51–60.

[226]

Kumar, V.; Yokozeki, T.; Karch, C.; Hassen, A. A.; Hershey, C. J.; Kim, S.; Lindahl, J. M.; Barnes, A.; Bandari, Y. K.; Kunc, V. Factors affecting direct lightning strike damage to fiber reinforced composites: A review. Compos. Part B: Eng. 2020, 183, 107688.

[227]

Li, Y. F.; Sun, J. R.; Li, S.; Tian, X. Y.; Yao, X. L.; Wang, B.; Zhu, Y. S.; Chen, J. L. Experimental study of the damage behaviour of laminated CFRP composites subjected to impulse lightning current. Compos. Part B: Eng. 2022, 239, 109949.

[228]

Yousefpour, K.; Lin, W. H.; Wang, Y. Q.; Park, C. Discharge and ground electrode design considerations for the lightning strike damage tolerance assessment of CFRP matrix composite laminates. Compos. Part B: Eng, 2020, 198, 108226.

[229]

Chu, H. T.; Xia, Q. S.; Zhang, Z. C.; Liu, Y. J.; Leng, J. S. Sesame-cookie topography silver nanoparticles modified carbon nanotube paper for enhancing lightning strike protection. Carbon 2019, 143, 204–214.

[230]

Li, Y. C.; Li, R. F.; Huang, L.; Wang, K.; Huang, X. R. Effect of hygrothermal aging on the damage characteristics of carbon woven fabric/epoxy laminates subjected to simulated lightning strike. Mater. Des. 2016, 99, 477–489.

[231]

Li, Y. C.; Xue, T.; Li, R. F.; Huang, X. R.; Zeng, L. J. Influence of a fiberglass layer on the lightning strike damage response of CFRP laminates in the dry and hygrothermal environments. Compos. Struct. 2018, 187, 179–189.

[232]

Kumar, V.; Sharma, S.; Pathak, A.; Singh, B. P.; Dhakate, S. R.; Yokozeki, T.; Okada, T.; Ogasawara, T. Interleaved MWCNT buckypaper between CFRP laminates to improve through-thickness electrical conductivity and reducing lightning strike damage. Compos. Struct. 2019, 210, 581–589.

[233]

Zhang, X. L.; Zhang, J. K.; Cheng, X. Q.; Huang, W. J. Carbon nanotube protected composite laminate subjected to lightning strike: Interlaminar film distribution investigation. Chin. J. Aeronaut. 2021, 34, 620–628.

[234]

Han, J. h.; Zhang, H.; Chen, M. j.; Wang, D.; Liu, Q.; Wu, Q. L.; Zhang, Z. The combination of carbon nanotube buckypaper and insulating adhesive for lightning strike protection of the carbon fiber/epoxy laminates. Carbon 2015, 94, 101–113.

[235]

Jiang, K. L.; Wang, J. P.; Li, Q. Q.; Liu, L.; Liu, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154–1161.

[236]

Zhang, L.; Zhang, G.; Liu, C. H.; Fan, S. S. High-density carbon nanotube buckypapers with superior transport and mechanical properties. Nano Lett. 2012, 12, 4848–4852.

[237]

Bai, Y. X.; Zhu, M. Q.; Wang, S. J.; Gao, F.; Gao, R. Y.; Wang, C. Y.; Wang, G. R.; Jin, H.; Liu, L. Q.; Zhang, H. et al. Superaligned carbon nanotube film/quartz fiber composites towards advanced lightweight lightning strike protection. Compos. Part A: Appl. Sci. Manuf. 2023, 173, 107617.

Nano Research
Pages 12364-12383
Cite this article:
Zhu M, Bai Y, Gao R, et al. Failure-analysis of carbon nanotubes and their extreme applications. Nano Research, 2023, 16(11): 12364-12383. https://doi.org/10.1007/s12274-023-6001-7
Topics:

1143

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 25 May 2023
Revised: 01 July 2023
Accepted: 10 July 2023
Published: 24 August 2023
© Tsinghua University Press 2023
Return