AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication

Co-doped Ni3S2 nanosheet array: A high-efficiency electrocatalyst for alkaline seawater oxidation

Meng Yue1Xun He2Shengjun Sun1Yuntong Sun1Mohamed S. Hamdy3( )Mhamed Benaissa4Alsamani A. M. Salih4Jun Liu5( )Xuping Sun1,2( )
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
Department of Chemical Engineering, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia
Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
Show Author Information

Graphical Abstract

A Co-doped Ni3S2 nanosheet array on Ni foam exhibits remarkable performance towards seawater oxidation, requiring an overpotential of only 368 mV to drive 100 mA·cm−2 in alkaline conditions.

Abstract

Developing efficient and durable oxygen evolution reaction (OER) catalysts holds great promise for green hydrogen production via seawater electrolysis, but remains a challenge. Herein, we report a Co-doped Ni3S2 nanosheet array on Ni foam (Co-Ni3S2/NF) as a high-efficiency OER electrocatalyst for seawater. In alkaline conditions, Co-Ni3S2/NF requires an overpotential of only 368 mV to drive 100 mA·cm–2, superior to Ni3S2/NF (385 mV). Besides, it exhibits at least 50-h continuous electrolysis.

Electronic Supplementary Material

Download File(s)
12274_2023_6002_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[2]

Zhang, K. X.; Liang, X.; Wang, L. N.; Sun, K.; Wang, Y. N.; Xie, Z. B.; Wu, Q. N.; Bai, X. Y.; Hamdy, M. S.; Chen, H. et al. Status and perspectives of key materials for PEM electrolyzer. Nano Res. Energy 2022, 1, e9120032.

[3]

Zhou, J.; Wang, F. F.; Wang, H. Q.; Hu, S. X.; Zhou, W. J.; Liu, H. Ferrocene-induced switchable preparation of metal-nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic HER in alkaline and acid media. Nano Res. 2023, 16, 2085–2093.

[4]

Jin, H. Y.; Yu, H. M.; Li, H. B.; Davey, K.; Song, T.; Paik, U.; Qiao, S. Z. MXene analogue: A 2D nitridene solid solution for high-rate hydrogen production. Angew. Chem., Int. Ed. 2022, 61, e202203850.

[5]

Xiang, C. X.; Papadantonakis, K. M.; Lewis, N. S. Principles and implementations of electrolysis systems for water splitting. Mater. Horiz. 2016, 3, 169–173.

[6]

Wu, H.; Huang, Q. X.; Shi, Y. Y.; Chang, J. W.; Lu, S. Y. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 2023, 16, 9142–9157.

[7]

Fu, W. Y.; Lin, Y. X.; Wang, M. S.; Si, S.; Wei, L.; Zhao, X. S.; Wei, Y. S. Sepaktakraw-like catalyst Mn-doped CoP enabling ultrastable electrocatalytic oxygen evolution at 100 mA·cm−2 in alkali media. Rare Met. 2022, 41, 3069–3077.

[8]

Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

[9]

Zhang, H.; Xi, B. J.; Gu, Y.; Chen, W. H.; Xiong, S. L. Interface engineering and heterometal doping Mo-NiS/Ni(OH)2 for overall water splitting. Nano Res. 2021, 14, 3466–3473.

[10]

Liu, H.; Zhang, Z.; Fang, J. J.; Li, M. X.; Sendeku, M. G.; Wang, X.; Wu, H. Y.; Li, Y. P.; Ge, J. J.; Zhuang, Z. B. et al. Eliminating over-oxidation of ruthenium oxides by niobium for highly stable electrocatalytic oxygen evolution in acidic media. Joule 2023, 7, 558–573.

[11]

Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022, 1, e9120029.

[12]

Lin, Y. C.; Dong, Y.; Wang, X. Z.; Chen, L. Electrocatalysts for the oxygen evolution reaction in acidic media. Adv. Mater. 2023, 35, 2210565.

[13]

Ren, X. Z.; Li, X. H.; Peng, Y. J.; Wang, G. Z.; Yin, J.; Zhao, X. C.; Wang, W.; Wang, X. B. FeNiS2/reduced graphene oxide electrocatalysis with reconstruction to generate FeNi oxo/hydroxide as a highly-efficient water oxidation electrocatalyst. Rare Met. 2022, 41, 4127–4137.

[14]

Zhong, D. Z.; Li, T.; Wang, D.; Li, L. N.; Wang, J. C.; Hao, G. Y.; Liu, G.; Zhao, Q.; Li, J. P. Strengthen metal-oxygen covalency of CoFe-layered double hydroxide for efficient mild oxygen evolution. Nano Res. 2022, 15, 162–169.

[15]

Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Lett. 2019, 4, 933–942.

[16]

Fang, X. D.; Wang, X. G.; Ouyang, L.; Zhang, L. C.; Sun, S. J.; Liang, Y. M.; Luo, Y. S.; Zheng, D. D.; Kang, T. R.; Liu, Q. et al. Amorphous Co-Mo-B film: A high-active electrocatalyst for hydrogen generation in alkaline seawater. Molecules 2022, 27, 7617.

[17]

Guo, J. X.; Zheng, Y.; Hu, Z. P.; Zheng, C. Y.; Mao, J.; Du, K.; Jaroniec, M.; Qiao, S. Z.; Ling, T. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 2023, 8, 264–272.

[18]

Zhang, F. H.; Liu, Y. F.; Wu, L. B.; Ning, M. H.; Song, S. W.; Xiao, X.; Hadjiev, V. G.; Fan, D. E.; Wang, D. Z.; Yu, L. et al. Efficient alkaline seawater oxidation by a three-dimensional core–shell dendritic NiCo@NiFe layered double hydroxide electrode. Mater. Today Phys. 2022, 27, 100841.

[19]

Chen, J.; Zhang, L. C.; Li, J.; He, X.; Zheng, Y. Y.; Sun, S. J.; Fang, X. D.; Zheng, D. D.; Luo, Y. S.; Wang, Y. et al. High-efficiency overall alkaline seawater splitting: Using a nickel-iron sulfide nanosheet array as a bifunctional electrocatalyst. J. Mater. Chem. A 2023, 11, 1116–1122.

[20]

Ding, P.; Song, H. Q.; Chang, J. W.; Lu, S. Y. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res. 2022, 15, 7063–7070.

[21]

Zhang, L. C.; Li, L.; Liang, J.; Fan, X. Y.; He, X.; Chen, J.; Li, J.; Li, Z. X.; Cai, Z. W.; Sun, S. J. et al. Highly efficient and stable oxygen evolution from seawater enabled by a hierarchical NiMoSx microcolumn@NiFe-layered double hydroxide nanosheet array. Inorg. Chem. Front. 2023, 10, 2766–2775.

[22]

Wu, Q.; Gao, Q. P.; Shan, B.; Wang, W. Z.; Qi, Y. P.; Tai, X. S.; Wang, X.; Zheng, D. D.; Yan, H.; Ying, B. W. et al. Recent advances in self-supported transition-metal-based electrocatalysts for seawater oxidation. Acta Phys. -Chim. Sin. 2023, 39, 2303012.

[23]

Zhang, F. H.; Yu, L.; Wu, L. B.; Luo, D.; Ren, Z. F. Rational design of oxygen evolution reaction catalysts for seawater electrolysis. Trends Chem. 2021, 3, 485–498.

[24]

Zhang, L. C.; Wang, J. Q.; Liu, P. Y.; Liang, J.; Luo, Y. S.; Cui, G. W.; Tang, B.; Liu, Q.; Yan, X. D.; Hao, H. G. et al. Ni(OH)2 nanoparticles encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation. Nano Res. 2022, 15, 6084–6090.

[25]

Lan, C.; Xie, H. P.; Wu, Y. F.; Chen, B.; Liu, T. Nanoengineered, Mo-doped, Ni3S2 electrocatalyst with increased Ni–S coordination for oxygen evolution in alkaline seawater. Energy Fuels 2022, 36, 2910–2917.

[26]

Liu, J. Y.; Liu, X.; Shi, H.; Luo, J. H.; Wang, L.; Liang, J. S.; Li, S. Z.; Yang, L. M.; Wang, T. Y.; Huang, Y. H. et al. Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures with enhanced activity for overall seawater splitting. Appl. Catal. B:Environ. 2022, 302, 120862.

[27]

Yang, C. X.; Dong, K.; Zhang, L. C.; He, X.; Chen, J.; Sun, S. J.; Yue, M.; Zhang, H.; Zhang, M.; Zheng, D. D. et al. Improved alkaline seawater splitting of NiS nanosheets by iron doping. Inorg. Chem. 2023, 62, 7976–7981.

[28]

Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.

[29]

Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.

[30]

Ma, T. F.; Xu, W. W.; Li, B. R.; Chen, X.; Zhao, J. J.; Wan, S. S.; Jiang, K.; Zhang, S. X.; Wang, Z. F.; Tian, Z. Q. et al. The critical role of additive sulfate for stable alkaline seawater oxidation on nickel-based electrodes. Angew. Chem., Int. Ed. 2021, 60, 22740–22744.

[31]

Kuang, Y.; Kenney, M. J.; Meng, Y. T.; Hung, W. H.; Liu, Y. J.; Huang, J. E.; Prasanna, R.; Li, P. S.; Li, Y. P.; Wang, L. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. USA 2019, 116, 6624–6629.

[32]

Ren, J. T.; Chen, L.; Tian, W. W.; Song, X. L.; Kong, Q. H.; Wang, H. Y.; Yuan, Z. Y. Rational synthesis of core–shell-structured nickel sulfide-based nanostructures for efficient seawater electrolysis. Small 2023, 19, 2300194.

[33]

Zhou, Q. Q.; Li, T. T.; Wang, J. Y.; Guo, F. Y.; Zheng, Y. Q. Hierarchical Cu2S NRs@CoS core–shell structure and its derivative towards synergistic electrocatalytic water splitting. Electrochim. Acta 2019, 296, 1035–1041.

[34]

Dang, K.; Zhang, S. H.; Wang, X. W.; Sun, W. M.; Wang, L. G.; Tian, Y.; Zhan, S. H. Cobalt diselenide (001) surface with short-range Co–Co interaction triggering high-performance electrocatalytic oxygen evolution. Nano Res. 2021, 14, 4848–4856.

[35]

Huang, S. C.; Meng, Y. Y.; Cao, Y. F.; Yao, F.; He, Z. J.; Wang, X. X.; Pan, H.; Wu, M. M. Amorphous NiWO4 nanoparticles boosting the alkaline hydrogen evolution performance of Ni3S2 electrocatalysts. Appl. Catal. B: Environ. 2020, 274, 119120.

[36]

He, X.; Hu, L.; Xie, L. S.; Li, Z. R.; Chen, J.; Li, X. H.; Li, J.; Zhang, L. C.; Fang, X. D.; Zheng, D. D. et al. Ambient ammonia synthesis via nitrite electroreduction over NiS2 nanoparticles-decorated TiO2 nanoribbon array. J. Colloid Interface Sci. 2023, 634, 86–92.

[37]

Zhang, G.; Feng, Y. S.; Lu, W. T.; He, D.; Wang, C. Y.; Li, Y. K.; Wang, X. Y.; Cao, F. F. Enhanced catalysis of electrochemical overall water splitting in alkaline media by Fe doping in Ni3S2 nanosheet arrays. ACS Catal. 2018, 8, 5431–5441.

[38]

Huang, C. Q.; Zhou, Q. C.; Duan, D. S.; Yu, L.; Zhang, W.; Wang, Z. Z.; Liu, J.; Peng, B. W.; An, P. F.; Zhang, J. et al. The rapid self-reconstruction of Fe-modified Ni hydroxysulfide for efficient and stable large-current-density water/seawater oxidation. Energy Environ. Sci. 2022, 15, 4647–4658.

Nano Research
Pages 1050-1055
Cite this article:
Yue M, He X, Sun S, et al. Co-doped Ni3S2 nanosheet array: A high-efficiency electrocatalyst for alkaline seawater oxidation. Nano Research, 2024, 17(3): 1050-1055. https://doi.org/10.1007/s12274-023-6002-6
Topics:

533

Views

20

Crossref

26

Web of Science

18

Scopus

0

CSCD

Altmetrics

Received: 25 May 2023
Revised: 28 June 2023
Accepted: 13 July 2023
Published: 01 August 2023
© Tsinghua University Press 2023
Return